§1. Bất đẳng thức

PN

Tìm tất cả các giá trị của tham số m để phương trình \(x^2-2mx+m+2=0\) có 2 nghiệm \(x_1,x_2\) thỏa mãn \(x_1^3+x_2^3\le16\)

( Mong mọi người giúp đỡ )

NL
30 tháng 4 2021 lúc 20:02

\(\Delta'=m^2-\left(m+2\right)\ge0\Leftrightarrow\left[{}\begin{matrix}m\ge2\\m\le-1\end{matrix}\right.\) (1)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m+2\end{matrix}\right.\)

\(x_1^3+x_2^3\le16\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)\le16\)

\(\Leftrightarrow8m^3-6m\left(m+2\right)-16\le0\)

\(\Leftrightarrow4m^3-3m^2-6m-8\le0\)

\(\Leftrightarrow\left(m-2\right)\left(4m^2+5m+4\right)\le0\)

\(\Leftrightarrow\left(m-2\right)\left[\left(2m+\dfrac{5}{4}\right)^2+\dfrac{39}{16}\right]\le0\)

\(\Leftrightarrow m\le2\) (2)

Kết hợp (1); (2) \(\Rightarrow\left[{}\begin{matrix}m=2\\m\le-1\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
PT
Xem chi tiết
PN
Xem chi tiết
PN
Xem chi tiết
TK
Xem chi tiết
H24
Xem chi tiết
CS
Xem chi tiết
TM
Xem chi tiết
DT
Xem chi tiết
L3
Xem chi tiết