Ôn tập chương III

H24

tìm m để pt \(\left(\sqrt{5m^2-2m-2}+m-1\right)\left(x+1\right)^3+x^2-x-3=0\) có ít nhất 1ngiệm thuộc (-1;0)

NL
17 tháng 12 2020 lúc 2:30

\(\Leftrightarrow\sqrt{5m^2-2m-2}+m-1=\dfrac{-x^2+x+3}{\left(x+1\right)^3}\)

\(\Leftrightarrow\sqrt{5m^2-2m-2}+m-4=\dfrac{-x^2+x+3}{\left(x+1\right)^3}-3\)

\(\Leftrightarrow\sqrt{5m^2-2m-2}+m-4=\dfrac{-x\left(x+2\right)\left(3x+4\right)}{\left(x+1\right)^3}\ge0\) ; \(\forall x\in\left(-1;0\right)\)

\(\Rightarrow\) Pt có nghiệm khi và chỉ khi \(\sqrt{5m^2-2m-2}\ge4-m\)

- Với \(m\ge4\) BPT luôn đúng

- Với \(m< 4\Leftrightarrow5m^2-2m-2\ge m^2-8m+16\)

\(\Leftrightarrow2m^2+3m-9\ge0\) 

Vậy \(\left[{}\begin{matrix}m\le-3\\m\ge\dfrac{3}{2}\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
DT
Xem chi tiết
H24
Xem chi tiết
PN
Xem chi tiết
SK
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
DD
Xem chi tiết
H24
Xem chi tiết