Bài 1: Căn bậc hai

DY

tìm m để phương trình \(x^2-2\left(2m+1\right)x+4m^2+4m=0\) có 2 nghiệm \(x_1;x_2\) thỏa mãn điều kiện \(|x_1-x_2|=x_1+x_2\)

NL
22 tháng 5 2019 lúc 22:26

\(\Delta'=\left(2m+1\right)^2-4m^2-4m=1>0\)

Phương trình luôn có 2 nghiệm pb

Do \(\left|x_1-x_2\right|\ge0\Rightarrow x_1+x_2\ge0\Rightarrow2m+1\ge0\Rightarrow m\ge-\frac{1}{2}\)

Khi đó, bình phương 2 vế ta được:

\(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2\)

\(\Leftrightarrow x_1^2-2x_1x_2+x_2^2=x_1^2+2x_1x_2+x_2^2\)

\(\Leftrightarrow-4x_1x_2=0\Leftrightarrow x_1x_2=0\)

\(\Leftrightarrow4m^2+4m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-1< -\frac{1}{2}\left(l\right)\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
CP
Xem chi tiết
CP
Xem chi tiết
HK
Xem chi tiết
TK
Xem chi tiết
HL
Xem chi tiết
DY
Xem chi tiết
MH
Xem chi tiết
PH
Xem chi tiết
PA
Xem chi tiết