Bài 1: Căn bậc hai

H24

$\text{Cho $x,y,z$ không âm thỏa mãn:}\\\begin{cases}x,y,x\le1\\x+y+z=\dfrac32\end{cases} \ \text{Tìm $Max$:}\\P=x^2+y^2+z^2$

H24
1 tháng 3 2021 lúc 14:12

`0<=y,z<=1`

`=>1-y,1-z>=0`

`=>(1-y)(1-z)>=0`

`=>1-y-z+yz>=0`

`=>yz>=y+z-1`

`=>2yz>=2x+2z-2`

`=>P=x^2+y^2+z^2`

`=>P=x^2+(y^2+2yz+z^2)-2yz`

`=>P=x^2+(y+z)^2-2yz`

`=>P<=x^2-2(y+z-1)+(3/2-x)^2`

`=>P<=(3/2-x)^2-2(1/2-x)+x^2`

`=>P<=9/4-3x+x^2-1+2x+x^2`

`=>P<=5/4+2x^2-x`

Giả sử:

`x<=y<=z`

`=>x+x+x<=x+y+z=3/2`

`=>3x<=3/2`

`=>x<=1/2`

`0<=x<=1/2=>2x^2-x<=0`

`=>P<=5/4`

Dấu "=" xảy ra khi `(x,y,z)=(0,1,1/2)` và các hoán vị

Bình luận (0)
NT
28 tháng 2 2021 lúc 22:13

Ta có: \(\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\ge0\forall x,y,z\)

\(\Leftrightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)

\(\Leftrightarrow2x^2+2y^2+2z^2+x^2+y^2+z^2\ge x^2+y^2+z^2+2xy+2yz+2xz\)

\(\Leftrightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)

\(\Leftrightarrow\left(x^2+y^2+z^2\right)\ge\dfrac{9}{4}:3=\dfrac{9}{4}\cdot\dfrac{1}{3}=\dfrac{3}{4}\)

Dấu '=' xảy ra khi \(x=y=z=\dfrac{1}{4}\)

Vậy: \(P_{max}=\dfrac{3}{4}\) khi \(x=y=z=\dfrac{1}{4}\)

Bình luận (1)
H24
28 tháng 2 2021 lúc 22:23

`0<=y,z<=1`

`=>1-y,1-z>=0`

`=>(1-y)(1-z)>=0`

`=>1-y-z+yz>=0`

`=>yz>=y+z-1`

`=>2yz>=2x+2z-2`

`=>P=x^2+y^2+z^2`

`=>P=x^2+(y^2+2yz+z^2)-2yz`

`=>P=x^2+(y+z)^2-2yz`

`=>P<=x^2-2(y+z-1)+(3/2-x)^2`

`=>P<=(3/2-x)^2-2(1/2-x)+x^2`

`=>P<=9/4-3x+x^2-1+2x+x^2`

`=>P<=5/4+2x^2-x`

Giả sử:

`x<=y<=z`

`=>x+x+x<=x+y+z=3/2`

`=>3x<=3/2`

`=>x<=1/2`

`0<=x<=1/2=>2x^2-x<=0`

`=>P<=5/4`

Dấu "=" xảy ra khi `(x,y,z)=(0,1,1/2)` và các hoán vị

Bình luận (0)

Các câu hỏi tương tự
PP
Xem chi tiết
PP
Xem chi tiết
DN
Xem chi tiết
PP
Xem chi tiết
Xem chi tiết
LN
Xem chi tiết
HT
Xem chi tiết
PP
Xem chi tiết
PP
Xem chi tiết