Bài 1: Căn bậc hai

PP

\(\text{Cho a,b,c đôi một khác nhau}.\text{Chứng minh:}\)

\(P=\dfrac{a^2+b^2}{\left(a-b\right)^2}+\dfrac{b^2+c^2}{\left(b-c\right)^2}+\dfrac{c^2+a^2}{\left(c-a\right)^2}\ge\dfrac{5}{2}\)

TH
12 tháng 1 2021 lúc 15:54

Bài này trong đề nào đó mới đây:

Đặt \(\dfrac{a+b}{a-b}=x;\dfrac{b+c}{b-c}=y;\dfrac{c+a}{c-a}=z\).

Ta có: \(2P=\dfrac{\left(a-b\right)^2+\left(a+b\right)^2}{\left(a-b\right)^2}+\dfrac{\left(b-c\right)^2+\left(b+c\right)^2}{\left(b-c\right)^2}+\dfrac{\left(c-a\right)^2+\left(c+a\right)^2}{\left(c-a\right)^2}=3+x^2+y^2+z^2=3+\left(x+y+z\right)^2-2\left(xy+yz+zx\right)\),

Mặt khác dễ dàng chứng minh được: \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=\left(x-1\right)\left(y-1\right)\left(z-1\right)\Leftrightarrow xy+yz+zx=-1\).

Từ đó \(2P=\left(x+y+z\right)^2+5\ge5\Leftrightarrow P\ge\dfrac{5}{2}\).

Bài này là bất đẳng thức nên mình không tìm điểm rơi.

Bình luận (0)

Các câu hỏi tương tự
PP
Xem chi tiết
VC
Xem chi tiết
LH
Xem chi tiết
PP
Xem chi tiết
NQ
Xem chi tiết
H24
Xem chi tiết
PJ
Xem chi tiết
KM
Xem chi tiết
AP
Xem chi tiết