Rút gọn biểu thức:
a) \(A=\left(\frac{3x-3\sqrt{x}-3}{x+\sqrt{x}-2}+\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}+2}\right):\frac{1}{\sqrt{x}+2}\left(x\ge0,x\ne1\right)\)
b) \(B=\frac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\frac{2\left(\sqrt{x-3}\right)}{\sqrt{x}+1}+\frac{\sqrt{x}+3}{3-\sqrt{x}}\left(x>0,x\ne9\right)\)
c) \(C=\frac{2\sqrt{x}-9}{x-5+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\left(x\ge0,x\ne4,x\ne9\right)\)
B1, P=(\(\frac{1-a\sqrt{a}}{1-\sqrt{ }a}+\sqrt{a})(\frac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a})\)
a, rút gọn P
B2, P=(\(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}_{ }-\frac{3x+3}{x-9}):(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1)\)
a, Rút gọn P
\(\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right)\).\(\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
1/ \(\sqrt{x-2}\) - \(\sqrt{1-3x}\) = 0
2/ \(\sqrt{15-x}\) + \(\sqrt{3-x}\) = 6
3/ \(\sqrt{x-1}\) - \(\sqrt{x+1}\) = 2
4/ \(\sqrt{\frac{1}{2}-3x}\) + \(\sqrt{3-\frac{1}{3}x}\) = 0
5/ \(2\sqrt{x-5}\) = \(\sqrt{-3x-2}\)
6/ \(\sqrt{x-1}\) - \(\sqrt{5x-1}\) = \(\sqrt{3x-2}\)
a, P=\((\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a})(\frac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\))
Rút gọn P.
b, P=(\(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}):(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1)\)
Rút gọn P
(Làm ơn giúp mk với..arigato cực cực super nhiều ạ...
Giải phương trình
1) \(3x^2+6x-\frac{4}{3}=\sqrt{\frac{x+7}{3}}\)
2) \(9x^2-x-4=2\sqrt{x+3}\)
3) \(x^2+\sqrt{x+5}=5\)
4) \(2x^2+2x+1=\left(4x-1\right).\sqrt{x^2+1}\)
5) \(x\sqrt{x^2-x+1}+2\sqrt{3x+1}=x^2+x+3\)
\[D=\left ( \frac{1}{3\sqrt{x}-6} +\frac{1}{x-2\sqrt{x}}\right )\left ( \frac{1}{6} +\frac{1}{2\sqrt{x}}\right )\\ D=\left ( \frac{1}{3\left ( \sqrt{x}-2 \right )} +\frac{1}{\sqrt{x}\left ( \sqrt{x}-2 \right )}\right ).\frac{\sqrt{x}+3}{6\sqrt{x}}\\ D=\frac{\sqrt{x}+3}{3\sqrt{x}\left ( \sqrt{x}-2 \right )}.\frac{\sqrt{x}+3}{6\sqrt{x}}\\ D=\frac{\left ( \sqrt{x}+3 \right )^{2}}{18x\left ( \sqrt{x}-2 \right )}\\ D=\frac{x+6\sqrt{x}+9}{18x\sqrt{x}-36x}\]
A/ Đúng
B/ Sai
Bài 2
a) A= \(\sqrt{\left(1-\sqrt{2}\right)^2}+\sqrt{\left(-2\right)^6}-\sqrt{\left(1+\sqrt{2}\right)^2}\)
b) B= \(\sqrt{7+2\sqrt{6}}+\sqrt{7-2\sqrt{6}}\)
c) C= \(\sqrt{7-4\sqrt{3}}\)
d) D= \(2\sqrt{7+4\sqrt{3}}-\sqrt{13-4\sqrt{3}}\)
e) E= \(\frac{1}{1+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{5}}+...+\frac{1}{\sqrt{79}+\sqrt{81}}\)
Bài 4:
a) \(\sqrt{x-1}=2\)
b) \(\sqrt{x^2-3x+2}=\sqrt{2}\)
c) \(\sqrt{4x+1}=x+1\)
d) \(\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}=2\)
e) \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)
f)
Giải các pt sau:
1, \(\sqrt{x^2+x+1}=2x+\sqrt{x^2-x+1}\)
2, \(2x^2+2x+6=2x\sqrt{x^2-x+1}+4\sqrt{3x+1}\)
3, \(\left(\sqrt{x+3}-\sqrt{x}\right)\left(1+\sqrt{x^2+3x}\right)=3\)
4, \(\sqrt{2x^2-1}+\sqrt{x^2-3x-2}=\sqrt{2x^2-2x+3}+\sqrt{x^2-x+2}\)
5, \(13\sqrt{x-1}+9\sqrt{x+1}=16x\)