Bài 1: Căn bậc hai

HT

a, P=\((\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a})(\frac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\))
Rút gọn P.
b, P=(\(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}):(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1)\)
Rút gọn P
(Làm ơn giúp mk với..arigato cực cực super nhiều ạ...

H24
22 tháng 7 2019 lúc 22:02

a/ ĐKXĐ: \(\left\{{}\begin{matrix}a\ge0\\a\ne1\end{matrix}\right.\)

\(P=\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\\ =\left(\frac{1-\sqrt{a^3}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1+\sqrt{a^3}}{1+\sqrt{a}}-\sqrt{a}\right)\\ =\left(\frac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{\left(1+\sqrt{a}\right)\left(1-\sqrt{a}+a\right)}{1+\sqrt{a}}-\sqrt{a}\right)\\ =\left(1+\sqrt{a}+a+\sqrt{a}\right)\left(1-\sqrt{a}+a-\sqrt{a}\right)\\ =\left(a+2\sqrt{a}+1\right)\left(a-2\sqrt{a}+1\right)\\ =\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)^2\)

\(=\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)\cdot\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)\\ =\left(a-1\right)^2\\ =a^2-2a+1\)

b/ ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)

\(P=\left(\frac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\frac{3x+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\frac{2\sqrt{x}-2-\left(\sqrt{x}-3\right)}{\sqrt{x}-3}\right)\\ =\left(\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\left(\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\\ =\frac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}+1}\\ =\frac{-3}{\sqrt{x}+3}\)

Bạn nhớ ktr lại cho chắc nha .-.

Bình luận (2)

Các câu hỏi tương tự
HT
Xem chi tiết
NL
Xem chi tiết
NH
Xem chi tiết
HT
Xem chi tiết
HT
Xem chi tiết
HA
Xem chi tiết
DK
Xem chi tiết
NH
Xem chi tiết
NT
Xem chi tiết