Bài 6: Biến đối đơn giản biểu thức chứa căn bậc hai

NR

So sánh:

a. \(\sqrt{15}-\sqrt{14}\)\(\sqrt{14}-\sqrt{13}\)

b. \(\sqrt{105}-\sqrt{101}\)\(\sqrt{101}-\sqrt{97}\)

H24
2 tháng 10 2017 lúc 16:10

\(A=\sqrt{15}-\sqrt{14}=\dfrac{1}{\sqrt{15}+\sqrt{14}}\)

\(B=\sqrt{14}-\sqrt{13}=\dfrac{1}{\sqrt{14}+\sqrt{13}}\)

hiển nhiên

\(\sqrt{15}+\sqrt{14}>\sqrt{14}+\sqrt{13}\)

\(=>A< B\)

Bình luận (0)
H24
7 tháng 9 2019 lúc 21:29

Với n\(\in\)N thì \(\frac{1}{\sqrt{n+4}+\sqrt{n}}=\frac{\sqrt{n+4}-\sqrt{n}}{n+4-n}\)\(=\frac{\sqrt{n+4}-\sqrt{n}}{4}\)

\(\Leftrightarrow\frac{4}{\sqrt{n+4}+\sqrt{n}}=\sqrt{n+4}-\sqrt{n}\) (1)

Áp dụng bất đẳng thức (1) ta được:

\(\sqrt{105}-\sqrt{101}=\frac{4}{\sqrt{105}+\sqrt{101}}\)

\(\sqrt{101}-\sqrt{97}=\frac{4}{\sqrt{101}+\sqrt{97}}\)

Ta thấy: \(\sqrt{105}+\sqrt{101}>\sqrt{101}+\sqrt{97}\)

\(\Leftrightarrow\frac{4}{\sqrt{105}+\sqrt{101}}< \frac{4}{\sqrt{101}+\sqrt{97}}\) hay \(\sqrt{105}-\sqrt{101}< \sqrt{101}-\sqrt{97}\)

Vậy bất đẳng thức được chứng minh.

Bình luận (0)
NT
7 tháng 9 2019 lúc 21:30

Với nN thì 1√n+4+√n=√n+4−√nn+4−n1n+4+n=n+4−nn+4−n=√n+4−√n4=n+4−n4

⇔4√n+4+√n=√n+4−√n⇔4n+4+n=n+4−n (1)

Áp dụng bất đẳng thức (1) ta được:

√105−√101=4√105+√101105−101=4105+101

√101−√97=4√101+√97101−97=4101+97

Ta thấy: √105+√101>√101+√97105+101>101+97

⇔4√105+√101<4√101+√97⇔4105+101<4101+97 hay √105−√101<√101−√97105−101<101−97

Vậy bất đẳng thức được chứng minh.

Bình luận (0)

Các câu hỏi tương tự
TH
Xem chi tiết
TN
Xem chi tiết
TP
Xem chi tiết
TN
Xem chi tiết
VH
Xem chi tiết
SP
Xem chi tiết
SP
Xem chi tiết
TN
Xem chi tiết
TH
Xem chi tiết