Bài 4: Khái niệm hai tam giác đồng dạng

NM

Qua giao điểm O của 2 đường chéo tứ giác ABCD, kẻ 1 đường thẳng tùy ý cắt AB tại M, cắt CD tại N. Đường thẳng qua M song song với CD cắt AC tại E, đường thẳng qua N song song với AB cắt BD tại F. Chứng minh BE//CF

Y
15 tháng 6 2019 lúc 17:20

+ \(\left\{{}\begin{matrix}AB//NF\\CD//ME\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\widehat{OMB}=\widehat{ONF}\\\widehat{OME}=\widehat{ONC}\end{matrix}\right.\)

\(\Rightarrow360^o-\left(\widehat{ONF}+\widehat{ONC}\right)=360^o-\left(\widehat{OMB}+\widehat{OME}\right)\)

\(\Rightarrow\widehat{FNC}=\widehat{EMB}\)

+ AB // NF \(\Rightarrow\frac{NF}{MB}=\frac{ON}{MO}\)

+ CD // ME \(\Rightarrow\frac{NC}{ME}=\frac{ON}{OM}=\frac{NF}{MB}\)

\(\Rightarrow\frac{NC}{NF}=\frac{ME}{MB}\)

+ ΔBME ∼ ΔFNC ( c.g.c )

\(\Rightarrow\widehat{BEM}=\widehat{FCN}\)

+ ME // CD \(\Rightarrow\widehat{MEA}=\widehat{ACN}\)

\(\Rightarrow\widehat{MEA}+\widehat{BEM}=\widehat{ACN}+\widehat{NCF}\)

\(\Rightarrow\widehat{BEA}=\widehat{ACF}\) => BE // CF

Bình luận (0)

Các câu hỏi tương tự
TL
Xem chi tiết
VT
Xem chi tiết
MT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
LH
Xem chi tiết
CI
Xem chi tiết
LD
Xem chi tiết
MN
Xem chi tiết