a: \(=\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)\)
b: \(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}+a\right)\)
a: \(=\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)\)
b: \(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}+a\right)\)
1.Chứng minh:\(\dfrac{a+\sqrt{2+\sqrt{5}.}\sqrt{\sqrt{9-4\sqrt{5}}}}{3\sqrt{2-\sqrt{5}}.\sqrt[3]{\sqrt{9+4\sqrt{5}-}3\sqrt{a^2}+\sqrt[3]{a}}}\)=\(-\sqrt[3]{a}-1\)
2.Rút gọn: \(\left(\dfrac{a^3\sqrt[]{a}-2a^3\sqrt{b}+\sqrt[3]{a^2}-\sqrt[3]{b}}{\sqrt[3]{a^2-\sqrt[3]{ab}}}+\dfrac{\sqrt[3]{a^2b}-\sqrt[3]{ab^2}}{\sqrt[3]{a}-\sqrt[3]{b}}\right)1\dfrac{1}{\sqrt[3]{a^2}}\)
giai giup mik vs a \(\dfrac{1}{1+\sqrt[3]{2}+\sqrt[3]{4}}\)
10.cho biểu thức:p=\(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right).\left(\dfrac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\)
a) rút gọn p
b)tìm a để p \(< 7-4\sqrt{3}\)
8.cho biểu thức:p=\(\left(\dfrac{2a+1}{\sqrt{a^3}+1}-\dfrac{\sqrt{a}}{a+\sqrt{a}+1}\right).\left(\dfrac{1+\sqrt{a^3}}{1+\sqrt{a}}-\sqrt{a}\right)\)
a)rút gọn p
b)xét dấu của biểu thức p .\(\sqrt{1-a}\)
Chứng minh rằng với \(a\in R\) và \(a>\dfrac{1}{8}\) thì
\(A=\sqrt[3]{a+\dfrac{a+1}{3}\sqrt{\dfrac{8a-1}{3}}}+\sqrt[3]{a-\dfrac{a+1}{3}\sqrt{\dfrac{8a-1}{3}}}\) là một số tự nhiên
A =\(\dfrac{x\sqrt[]{x}-3}{x-2\sqrt[]{x}-3}-\dfrac{2\left(\sqrt[]{x}-3\right)}{\sqrt[]{x}+1}+\dfrac{\sqrt[]{x}+3}{3-\sqrt[]{x}}\)
a. rút gọn A
b. Tính A với x = \(14-6\sqrt[]{5}\)
c. tìm min A
A=\(\dfrac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\dfrac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{3-\sqrt{x}}\)
a) Rút gọn A
b) Tính A với x=14-6\(\sqrt{5}\)
c) Tìm Min A
chứng minh \(\sqrt{a}=\sqrt[6]{a}\)
chứng minh \(\sqrt[a]{b}=b^{\dfrac{1}{a}}\)
a) \(\sqrt[3]{5-\sqrt{17}}+\sqrt[3]{5+\sqrt{17}}\)
b) \(\dfrac{1}{\sqrt[3]{4-\sqrt{15}}}+\sqrt[3]{4-\sqrt{15}}\)
c) \(\dfrac{\sqrt[3]{a^4}+\sqrt[3]{a^2b^2}+\sqrt[3]{b^4}}{\sqrt[3]{a^2}+\sqrt[3]{ab}+\sqrt[3]{b^2}}\)
Rút gọn các biểu thức sau
Chứng minh các đẳng thức sau :
a) \(\sqrt[3]{a^3b}=a\sqrt[3]{b}\)
b) \(\sqrt[3]{\dfrac{a}{b^2}}=\dfrac{1}{3}\sqrt[3]{ab};\left(b\ne0\right)\)