H24

\(\left\{{}\begin{matrix}\dfrac{2x-2}{x+1}+\dfrac{2y+1}{y+1}=1\\\dfrac{x-1}{x+1}+\dfrac{y-2}{y+1}=6\end{matrix}\right.\)

NT
7 tháng 1 2024 lúc 20:41

ĐKXĐ: \(\left\{{}\begin{matrix}x\ne-1\\y\ne-1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\dfrac{2x-2}{x+1}+\dfrac{2y+1}{y+1}=1\\\dfrac{x-1}{x+1}+\dfrac{y-2}{y+1}=6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{2x+2-4}{x+1}+\dfrac{2y+2-1}{y+1}=1\\\dfrac{x+1-2}{x+1}+\dfrac{y+1-3}{y+1}=6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2-\dfrac{4}{x+1}+2-\dfrac{1}{y+1}=1\\1-\dfrac{2}{x+1}+1-\dfrac{3}{y+1}=6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{-4}{x+1}-\dfrac{1}{y+1}=1-4=-3\\\dfrac{2}{x+1}+\dfrac{3}{y+1}=2-6=-4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{-4}{x+1}-\dfrac{1}{y+1}=-3\\\dfrac{4}{x+1}+\dfrac{6}{y+1}=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{y+1}=-11\\\dfrac{2}{x+1}+\dfrac{3}{y+1}=-4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y+1=\dfrac{-5}{11}\\\dfrac{2}{x+1}=-4-3:\dfrac{-5}{11}=-4+3\cdot\dfrac{11}{5}=\dfrac{33}{5}-4=\dfrac{13}{5}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-\dfrac{16}{11}\\x+1=\dfrac{10}{13}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{16}{11}\\x=-\dfrac{3}{13}\end{matrix}\right.\left(nhận\right)\)

Bình luận (0)
NL
7 tháng 1 2024 lúc 20:44

ĐKXĐ: \(x\ne-1;y\ne-1\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2x-2}{x+1}+\dfrac{2y+1}{y+1}=1\\\dfrac{2x-2}{x+1}+\dfrac{2y-4}{y+1}=12\end{matrix}\right.\)

Trừ vế cho vế:

\(\Rightarrow\dfrac{2y-4}{y+1}-\dfrac{2y+1}{y+1}=12-1\)

\(\Leftrightarrow\dfrac{-5}{y+1}=11\)

\(\Rightarrow y+1=-\dfrac{5}{11}\Rightarrow y=-\dfrac{16}{11}\)

Thế vào \(\dfrac{x-1}{x+1}+\dfrac{y-2}{y+1}=6\Rightarrow\dfrac{x-1}{x+1}+\dfrac{38}{5}=6\)

\(\Rightarrow\dfrac{x-1}{x+1}=-\dfrac{8}{5}\Rightarrow5x-5=-8x-7\)

\(\Rightarrow x=-\dfrac{2}{13}\)

Bình luận (0)

Các câu hỏi tương tự
DY
Xem chi tiết
PH
Xem chi tiết
NA
Xem chi tiết
KC
Xem chi tiết
MH
Xem chi tiết
TM
Xem chi tiết
DT
Xem chi tiết
DY
Xem chi tiết
MH
Xem chi tiết