35/Cho hình chữ nhật ABCD, hai đường chéo AC và BD cắt nhau tại O. Lấy E là điểm bất kì thuộc đoạn thẳng OA. Đường thẳng BE cắt AD tại M. Qua D vẽ một đường thẳng song song với BM, đường thẳng này cắt BC tại F và cắt AC tại N.
a. Chứng minh tứ giác BMDF là hình bình hành.
b. Chứng minh OBE = ODN.
c. Qua E vẽ một đường thẳng song song với BD, đường thẳng này cắt AD tại H, cắt CD kéo dài tại I. Gọi O’ là trung điểm của đoạn thẳng IH. Cm: O’O // DF
d. Gọi K là điểm đối xứng với D qua O’. Cm: K, M, B thẳng hàng.
Cho tứ giác ABCD. Gọi M là điểm bất kì trên cạnh AB. Từ M vẽ các đường thẳng song song với AC và BD chúng cắt BC và AC lần lượt tại N và Q. Từ N vẽ đường thẳng song song với BD cắt AC tại P. Tứ giác MNPQ là hình gì ? Vì sao?
Cho tam giác ABC vuông tại A (AB bé thua AC ).Vẽ đường cao AH và đường trung tuyến AM của tam giác ABC .Qua M ,vẽ đường thẳng song song cạnh AC cắt cạnh AB tại D và vẽ đường thẳng song song cạnh AB cắt cạnh AC tại E
a) chứng minh tứ giác ADME là hình chữ nhật
b) biết AH =4,8cm,DE =5cm.Tính diện tích tam giác ABC
c) chứng minh HD vuông gốc với HE
Cho tứ giác ABCD có AB = CD, AB và CD không song song với nhau.
a, CMR: Đường thẳng đi qua trung điểm của BC và AD tạo với đường thẳng AB và CD những góc nhọn bằng nhau.
b, Đường thẳng đi qua trung điểm của AC và BD tạo với đường thẳng AB và CD những góc nhọn bằng nhau.
Cho hình thoi ABCD, O là giao điểm của 2 đường chéo. Vẽ đường thẳng qua B song song với AC, đường thẳng C sng song với BD, 2 đường thẳng đó cắt nhau ở K
a. tứ giác OBKC là hình gì?
b. chứng minh AB=OK
c. tìm điều kiện của hình thoi ABCD để OBCK là hình vuông
Các bạn giúp mình câu này với ạ. Thanks trước:
Cho tam giác ABC vuông tại A có AB = 9cm, AC = 12 cm. Gọi M là trung điểm của BC. Từ M kẻ ME vuông góc với AB ( E thuộc AB). Kẻ MF vuông góc với AC (F thuộc AC).
a) Tứ giác AEMF là hình gì? Tại sao?
b) Tính độ dài AM
c) Từ D kẻ đường thẳng song song với AM, cắt đường thẳng FM tại D. Chứng minh D đối xứng với A qua trung điểm H của BM.
d) EC cắt AM và MF theo thứ tự tại I và K. Chứng minh: IC = 4IK.
Cho tam giác ABC lấy E thuộc cạnh AB sao cho EA=EB, qua E vẽ đường thẳng song song với BC cắt AC tại F. Chứng minh F là trung điểm của AC
Cho tam giác ABC vuông tại A có AB = 3cm; AC = 4cm. Đường phân giác AD. Kẻ
DE⊥AB;DF⊥AC. Qua đỉnh A của tam giác ABC kẻ đường thẳng d không song song với BC, đường thẳng này cắt DE, DF kéo dài tại M, N. Chứng minh BM // CN
Tam giác ABC có hai trung tuyến BM và CN cắt nhau tại G. Gọi P và Q lần lượt là các trung điểm BG và CG. a) Chứng minh MNPQ là hình bình hành. b) Từ M kẻ đường thẳng song song với AB cắt BC tại I. Chứng minh A, G, I thẳng hàng. c) Cho AI = 9cm, BC = 10cm. Tính chu vi tứ giác MNPQ.