Bài 6: Biến đối đơn giản biểu thức chứa căn bậc hai

H24

Giúp mik vs ak!! Mik cảm ơn.

Rút gọn biểu thức:

a. \(\frac{6}{\sqrt{2}-\sqrt{3}+3}\)

b. \(\left(\frac{4}{\sqrt{5}+1}-\frac{4}{\sqrt{5}-1}\right):\sqrt{3+2\sqrt{2}}\)

NT
25 tháng 10 2020 lúc 19:51

a) Ta có: \(\frac{6}{\sqrt{2}-\sqrt{3}+3}\)

\(=\frac{6\left(\sqrt{2}-\sqrt{3}-3\right)}{\left(\sqrt{2}-\sqrt{3}+3\right)\left(\sqrt{2}-\sqrt{3}-3\right)}\)

\(=\frac{6\left(\sqrt{2}-\sqrt{3}-3\right)}{5-2\sqrt{6}-9}\)

\(=\frac{6\left(\sqrt{2}-\sqrt{3}-3\right)}{-4-2\sqrt{6}}\)

\(=\frac{6\left(\sqrt{2}-\sqrt{3}-3\right)}{-2\sqrt{2}\left(\sqrt{2}-\sqrt{3}\right)}\)

\(=\frac{3\left(\sqrt{2}-\sqrt{3}-3\right)\left(\sqrt{2}+\sqrt{3}\right)}{-\sqrt{2}\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}\)

\(=\frac{3\sqrt{2}\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}-3\right)}{2}\)

b) Ta có: \(\left(\frac{4}{\sqrt{5}+1}-\frac{4}{\sqrt{5}-1}\right):\sqrt{3+2\sqrt{2}}\)

\(=\left(\frac{4\left(\sqrt{5}-1\right)}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}-\frac{4\left(\sqrt{5}+1\right)}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}\right):\sqrt{2+2\cdot\sqrt{2}\cdot1+1}\)

\(=\left(\frac{4\left(\sqrt{5}-1\right)}{4}-\frac{4\left(\sqrt{5}+1\right)}{4}\right):\sqrt{\left(\sqrt{2}+1\right)^2}\)

\(=\left(\sqrt{5}-1-\sqrt{5}-1\right):\left|\sqrt{2}+1\right|\)

\(=-\frac{2}{\sqrt{2}+1}\)(Vì \(\sqrt{2}+1>0\))

\(=-\frac{2\left(\sqrt{2}-1\right)}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}\)

\(=-2\left(\sqrt{2}-1\right)\)

\(=-2\sqrt{2}+2\)

Bình luận (0)

Các câu hỏi tương tự
SP
Xem chi tiết
DT
Xem chi tiết
SP
Xem chi tiết
ML
Xem chi tiết
PM
Xem chi tiết
LN
Xem chi tiết
TN
Xem chi tiết
NP
Xem chi tiết
H24
Xem chi tiết