Bài 2. PHƯƠNG TRÌNH ĐƯỜNG TRÒN

NN

giúp em với ạaaa
viết phương trình đường tròn (C) có tâm I biết (C) tiếp xúc đường thẳng (Δ) : x + 2y - 8 = 0 tại điểm A có hoành độ xA= 2 và cắt đường thẳng (d) : 3x - y - 9 = 0 tại 2 điểm B, C sao cho tam giác IBC vuông.

NL
1 tháng 6 2020 lúc 17:40

\(A\left(2;3\right)\) \(\Rightarrow\) I thuộc đường thẳng d' qua A vuông góc \(\Delta\)

Phương trình d':

\(2\left(x-2\right)-1\left(y-3\right)=0\Leftrightarrow2x-y-1=0\)

Gọi \(I\left(a;2a-1\right)\) \(\Rightarrow IA=\sqrt{\left(a-2\right)^2+\left(2a-4\right)^2}=\sqrt{5\left(a-2\right)^2}\)

Gọi H là trung điểm BC, do IBC vuông cân tại I \(\Rightarrow IH\perp BC\Rightarrow IH=d\left(I;d\right)\)

Mặt khác IH là trung tuyến ứng với cạnh huyền tam giác vuông cân

\(\Rightarrow IH=\frac{IB\sqrt{2}}{2}=\frac{IA\sqrt{2}}{2}\Leftrightarrow d\left(I;d\right)=\frac{IA\sqrt{2}}{2}\)

\(\Leftrightarrow\frac{\left|3a-\left(2a-1\right)-9\right|}{\sqrt{3^2+\left(-1\right)^2}}=\frac{\sqrt{10\left(a-2\right)^2}}{2}\)

\(\Leftrightarrow\left|a-8\right|=5\sqrt{\left(a-2\right)^2}=5\left|a-2\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}a-8=5a-10\\a-8=10-5a\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=\frac{1}{2}\\a=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}I\left(\frac{1}{2};0\right)\\I\left(3;5\right)\end{matrix}\right.\)

Có 2 đường tròn thỏa mãn: \(\left[{}\begin{matrix}\left(x-\frac{1}{2}\right)^2+y^2=\frac{45}{4}\\\left(x-3\right)^2+\left(y-5\right)^2=5\end{matrix}\right.\)

Bạn kiểm tra lại tính toán

Bình luận (0)

Các câu hỏi tương tự
DL
Xem chi tiết
H24
Xem chi tiết
ND
Xem chi tiết
LT
Xem chi tiết
TV
Xem chi tiết
LH
Xem chi tiết
NA
Xem chi tiết
ML
Xem chi tiết
DV
Xem chi tiết