Bài 6: Biến đối đơn giản biểu thức chứa căn bậc hai

LN

Giải PT:\(2\left(x^2-3x+2\right)=3\sqrt{x^3+8}\)

NL
28 tháng 9 2019 lúc 17:25

ĐKXĐ: \(x\ge-2\)

\(\Leftrightarrow2\left(x^2-3x+2\right)=3\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x+2}=a\\\sqrt{x^2-2x+4}=b\end{matrix}\right.\) pt trở thành:

\(2\left(a^2-b^2\right)=3ab\)

\(\Leftrightarrow2a^2-3ab-2b^2=0\)

\(\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x+2}=2\sqrt{x^2-2x+4}\\2\sqrt{x+2}=\sqrt{x^2-2x+4}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+4=4x^2-8x+16\\4x+8=x^2-2x+4\end{matrix}\right.\) \(\Rightarrow...\)

Bình luận (0)

Các câu hỏi tương tự
LN
Xem chi tiết
LN
Xem chi tiết
LN
Xem chi tiết
LN
Xem chi tiết
LN
Xem chi tiết
H24
Xem chi tiết
LN
Xem chi tiết
HL
Xem chi tiết
MS
Xem chi tiết