Bài 6: Biến đối đơn giản biểu thức chứa căn bậc hai

LN

Giải PT sau :\(\sqrt{x+1}+2\left(x+1\right)=x-1+\sqrt{1-x}+3\sqrt{1-x^2}\)

BL
21 tháng 8 2019 lúc 10:51

ĐK : \(-1\le x\le1\)

+ Đặt \(\left\{{}\begin{matrix}a=\sqrt{x+1}\ge0\\b=\sqrt{1-x}\ge0\end{matrix}\right.\) thì pt đã cho trở thành :

\(a+2a^2=-b^2+b+3ab\)

\(\Rightarrow a+2a^2+b^2-b-3ab=0\)

\(\Rightarrow a\left(2a-b+1\right)-b\left(2a-b+1\right)=0\)

\(\Rightarrow\left(a-b\right)\left(2a-b+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=b\\2a=b-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\sqrt{x+1}=\sqrt{1-x}\\2\sqrt{x+1}+1=\sqrt{1-x}\end{matrix}\right.\)

+ TH1 : \(\sqrt{x+1}=\sqrt{1-x}\Leftrightarrow x+1=1-x\Leftrightarrow x=0\) ( TM )

+ TH2 : \(2\sqrt{x+1}+1=\sqrt{1-x}\)

\(\Leftrightarrow4x+5+4\sqrt{x+1}=1-x\)

\(\Leftrightarrow4\sqrt{x+1}=-5x-4\)

\(\Leftrightarrow\left\{{}\begin{matrix}-5x-4\ge0\\16\left(x+1\right)=\left(-5x-4\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le-\frac{4}{5}\\16x+16=25x^2+40x+16\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-1\le x\le-\frac{4}{5}\\25x^2+24x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1\le x\le-\frac{4}{5}\\x\left(25x+24\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-1\le x\le-\frac{4}{5}\\\left[{}\begin{matrix}x=0\left(KTM\right)\\x=-\frac{24}{25}\left(TM\right)\end{matrix}\right.\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
LN
Xem chi tiết
LN
Xem chi tiết
H24
Xem chi tiết
VH
Xem chi tiết
MS
Xem chi tiết
LN
Xem chi tiết
CW
Xem chi tiết
LN
Xem chi tiết
TN
Xem chi tiết