§1. Đại cương về phương trình

DT

Giải hệ phương trình sau\(\begin{cases}x+y+\frac{1}{x}+\frac{1}{y}=5\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=9\end{cases}\)

HT
15 tháng 12 2016 lúc 22:17

ĐK: x khác 0

pt (2) \(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2=13\)

Đặt \(a=x+\frac{1}{x};b=y+\frac{1}{y}\), hệ pt trở thành:

\(\begin{cases}a+b=5\\a^2+b^2=13\end{cases}\) giải hệ pt đối xứng loại I được

\(\begin{cases}a=2\\b=3\end{cases}\) hoặc \(\begin{cases}a=3\\b=2\end{cases}\)

Thế vào được tập nghiệm của hệ pt đã cho:

\(\left\{\left(1;\frac{3-\sqrt{5}}{2}\right);\left(1;\frac{3+\sqrt{5}}{2}\right);\left(\frac{3-\sqrt{5}}{2};1\right);\left(\frac{3+\sqrt{5}}{2};1\right)\right\}\)

Bình luận (1)

Các câu hỏi tương tự
NH
Xem chi tiết
PT
Xem chi tiết
HT
Xem chi tiết
HT
Xem chi tiết
HT
Xem chi tiết
YH
Xem chi tiết
MD
Xem chi tiết
NN
Xem chi tiết
ND
Xem chi tiết