Ôn tập chương III

TL

Giải các phương trình vô tỉ sau:

a) 3\(\sqrt{2+x}\)- 6\(\sqrt{2-x}\)+ 4\(\sqrt{4-x^2}\)= 10 - 3x

b) x + \(\sqrt{4-x^2}\) = 2 + 3x\(\sqrt{4-x^2}\)

AH
18 tháng 11 2018 lúc 12:10

Câu a)

ĐKXĐ:.....

Đặt \(\sqrt{2+x}=a; \sqrt{2-x}=b\Rightarrow a^2+b^2=4\)

PT đã cho tương đương với:

\(3\sqrt{2+x}-6\sqrt{2-x}+4\sqrt{(2-x)(2+x)}=4+3(2-x)\)

\(\Leftrightarrow 3a-6b+4ab=a^2+b^2+3b^2\)

\(\Leftrightarrow 3(a-2b)=a^2+4b^2-4ab=(a-2b)^2\)

\(\Leftrightarrow (a-2b)^2-3(a-2b)=0\)

\(\Leftrightarrow \left[\begin{matrix} a-2b=0\\ a-2b=3\end{matrix}\right.\)

Nếu \(a-2b=0\Leftrightarrow a^2=4b^2\Leftrightarrow 2+x=4(2-x)\)

\(\Rightarrow x=\frac{6}{5}\) (t/m)

Nếu \(a-2b=3\Leftrightarrow a=2b+3\Rightarrow \sqrt{x+2}=2\sqrt{2-x}+3\geq 3\)

(vô lý vì \(x\leq 2\rightarrow \sqrt{x+2}\leq 2\))

Vậy pt có nghiệm duy nhất $x=\frac{6}{5}$

Bình luận (0)
AH
18 tháng 11 2018 lúc 12:52

Câu b)

ĐKXĐ: \(-2\leq x\leq 2\)

Đặt \(\sqrt{4-x^2}=a\) (\(a\geq 2)\) Ta có hpt sau:

\(\left\{\begin{matrix} a^2+x^2=4\\ x+a=2+3xa\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} (a+x)^2-2ax=4\\ x+a=3xa+2\end{matrix}\right.\)

\(\Rightarrow (3ax+2)^2-2ax=4\)

\(\Leftrightarrow 9a^2x^2+10ax=0\Leftrightarrow ax=0 \) hoặc $ax=\frac{-10}{9}$

Nếu \(ax=0\Rightarrow \left[\begin{matrix} x=0\\ a=0\rightarrow x=\pm 2\end{matrix}\right.\)

Thử lại thấy $x=0; x=2$ thỏa mãn

Nếu \(ax=\frac{-10}{9}\Rightarrow x+a=\frac{-4}{3}\)

Theo định lý Vi-et đảo thì $x,a$ là nghiệm của pt:

\(X^2+\frac{4}{3}X-\frac{10}{9}=0\)

\((x,a)=(\frac{-2+\sqrt{14}}{3}; \frac{-2-\sqrt{14}}{3})\) và hoán vị. Thử lại ta thấy \(x=\frac{-2-\sqrt{14}}{3}\) thỏa mãn
Vậy........

Bình luận (3)

Các câu hỏi tương tự
NM
Xem chi tiết
SK
Xem chi tiết
LH
Xem chi tiết
TG
Xem chi tiết
SK
Xem chi tiết
LB
Xem chi tiết
CK
Xem chi tiết
SK
Xem chi tiết
H24
Xem chi tiết