Bài 1: Mở đầu về phương trình

VN

Giải các phương trình sau

a) \(\dfrac{2-x}{2001}-1=\dfrac{1-x}{2002}-\dfrac{x}{2003}\)

b) \(\dfrac{2x-3}{97}-\dfrac{2x-4}{96}+\dfrac{2x-5}{95}=\dfrac{2x-6}{94}\)

NM
18 tháng 1 2018 lúc 11:11

a,\(\dfrac{2-x}{2001}-1=\dfrac{1-x}{2002}-\dfrac{x}{2003}\)

<=> \(\dfrac{2-x}{2001}-1+2=\dfrac{1-x}{2002}-\dfrac{x}{2003}+2\)

<=>\(\dfrac{2-x}{2001}+1=\left(\dfrac{1-x}{2002}+1\right)+\left(\dfrac{-x}{2003}+1\right)\)

<=>\(\dfrac{2003-x}{2001}=\dfrac{2003-x}{2002}+\dfrac{2003-x}{2003}\)

<=>\(\dfrac{2003-x}{2001}-\dfrac{2003-x}{2002}-\dfrac{2003-x}{2003}=0\)

<=> \(\left(2003-x\right)\left(\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

\(\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\ne0\)

=> \(2003-x=0\)

=> \(x=2003\)

Vậy : S = \(\left\{2003\right\}\)

b, \(\dfrac{2x-3}{97}-\dfrac{2x-4}{96}+\dfrac{2x-5}{95}=\dfrac{2x-6}{94}\)

<=> \(\dfrac{2x-3}{97}-\dfrac{2x-4}{96}=\dfrac{2x-6}{94}-\dfrac{2x-5}{95}\)

<=> \(\dfrac{2x-3}{97}-\dfrac{2x-4}{96}-2=\dfrac{2x-6}{94}-\dfrac{2x-5}{95}-2\)

<=> \(\left(\dfrac{2x-3}{97}-1\right)-\left(\dfrac{2x-4}{96}-1\right)=\left(\dfrac{2x-6}{94}-1\right)-\left(\dfrac{2x-5}{95}-1\right)\)

<=>\(\dfrac{2x-100}{97}-\dfrac{2x-100}{96}=\dfrac{2x-100}{94}-\dfrac{2x-100}{95}\)

<=> \(\dfrac{2x-100}{97}-\dfrac{2x-100}{96}-\dfrac{2x-100}{94}+\dfrac{2x-100}{95}=0\)

<=> \(\left(2x-100\right)\left(\dfrac{1}{97}-\dfrac{1}{96}-\dfrac{1}{94}+\dfrac{1}{95}\right)=0\)

\(\dfrac{1}{97}-\dfrac{1}{96}-\dfrac{1}{94}+\dfrac{1}{95}\ne0\)

=>\(2x-100=0\)

=> \(2x=100\)

=>\(x=50\)

Vậy: S=\(\left\{50\right\}\)

Bình luận (1)

Các câu hỏi tương tự
LH
Xem chi tiết
ND
Xem chi tiết
H24
Xem chi tiết
DC
Xem chi tiết
TA
Xem chi tiết
TL
Xem chi tiết
TA
Xem chi tiết
TA
Xem chi tiết
LH
Xem chi tiết