\(PT.\Rightarrow3x-9-\left(10-4x\right)=6x+5.\)
\(\Leftrightarrow3x-9-10+4x=6x+5.\\ \Leftrightarrow7x-19=6x+5.\\ \Leftrightarrow x=24.\)
\(PT.\Rightarrow3x-9-\left(10-4x\right)=6x+5.\)
\(\Leftrightarrow3x-9-10+4x=6x+5.\\ \Leftrightarrow7x-19=6x+5.\\ \Leftrightarrow x=24.\)
Giải các phương trình sau
a) \(\dfrac{5x+6}{7}\)-\(\dfrac{3x+1}{4}\)=\(\dfrac{x+16}{5}\)
b) \(\dfrac{x+5}{4}-\dfrac{2x-5}{3}=\dfrac{6x-1}{3}+\dfrac{2x-3}{12}\)
c)\(\dfrac{x-3}{4}-\dfrac{2x+5}{7}-\dfrac{x-1}{2}=1 \)
d) \(1- \dfrac{2x-1}{9}=\dfrac{x}{2}-\dfrac{13x-10}{6}\)
Giải các phương trình sau
a) \(\dfrac{2-x}{2001}-1=\dfrac{1-x}{2002}-\dfrac{x}{2003}\)
b) \(\dfrac{2x-3}{97}-\dfrac{2x-4}{96}+\dfrac{2x-5}{95}=\dfrac{2x-6}{94}\)
Giải các phương trình sau :
a, \(6x^2-5x+3=2x-3x\left(3-2x\right)\)
b,\(\dfrac{2\left(x-4\right)}{4}-\dfrac{3+2x}{10}=x+\dfrac{1-x}{5}\)
c,\(\dfrac{2x}{3}+\dfrac{3x-5}{4}=\dfrac{3\left(2x-1\right)}{2}-\dfrac{7}{6}\)
d,\(\dfrac{6x+5}{2}-\dfrac{10x+3}{4}=2x+\dfrac{2x+1}{2}\)
e,\(\left(x-4\right)\left(x+4\right)-2\left(3x-2\right)=\left(x-4\right)^2\)
Bài 3:
a) \(\dfrac{2x-1}{5}\)-\(\dfrac{x-2}{3}\)
=\(\dfrac{x+7}{15}\)
b) \(\dfrac{x+3}{2}\)-\(\dfrac{x-1}{3}\)
=\(\dfrac{x+5}{6}\)+1
c) \(\dfrac{2\left(x+5\right)}{3}\)+\(\dfrac{x+12}{2}\)
-\(\dfrac{5\left(x-2\right)}{6}\)=\(\dfrac{x}{3}\)+11
d) \(\dfrac{x-4}{5}\)+\(\dfrac{3x-2}{10}\)-x
=\(\dfrac{2x-5}{3}\)-\(\dfrac{7x+2}{6}\)
e) \(\dfrac{\left(2x-3\right)\left(2x+3\right)}{8}\)
=\(\dfrac{\left(x-4^{ }\right)^2}{6}\)+\(\dfrac{\left(x-2\right)^2}{3}\)
d) \(\dfrac{7x^2-14x-5}{15}\)
=\(\dfrac{\left(2x+1\right)^2}{5}\)-\(\dfrac{\left(x-1\right)^2}{3}\)
e) \(\dfrac{\left(7x+1\right)\left(x-2\right)}{10}\)+\(\dfrac{2}{5}\)
=\(\dfrac{\left(x-2\right)^2}{5}\)+\(\dfrac{\left(x-1\right)\left(x-3\right)}{2}\)
giả phương trình
\(\dfrac{x+1}{2}+\dfrac{3x-2}{3}=\dfrac{x-7}{12}\)
b) \(\dfrac{2x}{x-3}-\dfrac{5}{x+3}=\dfrac{x^2+21}{x^2-9}\)
c) x3+2x = 0
d) ( x-4) (7x-3) -x2+16=0
e) 2x-4=2
g) (x+2)(x-3) = 0
h) \(\dfrac{2}{x+1}-\dfrac{1}{x-2}=\dfrac{3x-11}{\left(x+1\right).\left(x-2\right)}
\dfrac{ }{ }\)
i) \(\dfrac{1}{x+2}+\dfrac{5}{x-2}=\dfrac{2x-12}{x^2-4}\)
a) 5(k+3x)(x+1)-4(1+2x)=80 x\(_0\)=2Tìm gt của kb) x+1=xc) x+2=0d) x+5=0e) (x+1)(2x-3)-3(x-2)=2(x-1)\(^2\)f) (x+1)(x\(^2\)-x+1)-2x=x(x-1)(x+1)g)\(\dfrac{x}{3}\)-\(\dfrac{5x}{6}\)-\(\dfrac{15x}{12}\)=\(\dfrac{x}{4}\)-5h) \(\dfrac{x-1}{2}\)-\(\dfrac{x+1}{15}\)-\(\dfrac{2x-13}{6}\)=0i) \(\dfrac{3\left(5x-2\right)}{4}\)-2=\(\dfrac{7x}{3}\)-5(x-7)
j) \(\dfrac{x-3}{11}\)+\(\dfrac{x+1}{3}\)=\(\dfrac{x+7}{9}\)-1k)\(\dfrac{3x-0,4}{2}\)+\(\dfrac{1,5-2x}{3}\)=\(\dfrac{x+0,5}{5}\)l) \(\dfrac{x-4}{5}\)+\(\dfrac{3x-2}{10}\)-x=\(\dfrac{2x-5}{3}\)-\(\dfrac{7x+2}{6}\)m) \(\dfrac{\left(2x-3\right)\left(2x+3\right)}{8}\)=\(\dfrac{\left(x-4\right)^{^2}}{6}\)+\(\dfrac{\left(x-2^{ }\right)^2}{3}\)n) \(\dfrac{7x^2-14x-5}{15}\)=\(\dfrac{\left(2x+1\right)^2}{5}\)-\(\dfrac{\left(x-1\right)^2}{3}\)o) \(\dfrac{\left(7x+1\right)\left(x-2\right)}{10}\)+\(\dfrac{2}{5}\)=\(\dfrac{\left(x-2^{ }\right)^2}{5}\)+\(\dfrac{\left(x-1\right)\left(x-2\right)}{10}\)
Giải phương trình :
a,\(\dfrac{6x+5}{2}-\dfrac{10x+3}{4}=2x+\dfrac{2x+1}{2}\)
b,\(\left(x+1\right)^3-\left(x-1\right)^3=6\left(x^2+x+1\right)\)
c, \(\dfrac{x+2}{13}+\dfrac{2x+45}{15}=\dfrac{3x+8}{37}+\dfrac{4x+69}{9}\)
Giải phương trình :
\(\dfrac{x+1}{1}\) + \(\dfrac{2x+3}{3}\) + \(\dfrac{3x+5}{5}\) + ... + \(\dfrac{20x+39}{39}\) = 2 + \(\dfrac{4}{3}\) + \(\dfrac{6}{5}\) + ... +\(\dfrac{40}{39}\)
Bài 2:
a) (x+1)(2x-3)-3(x-2)
=2(x-1)\(^2\)
b) (x+1)(x\(^2\)-x+1)-2x
=x(x-1)(x+1)
c) \(\dfrac{x}{3}\)-\(\dfrac{5x}{6}\)-\(\dfrac{15x}{12}\)=\(\dfrac{x}{4}\)-5
d) \(\dfrac{x-1}{2}\)-\(\dfrac{x+1}{15}\)-
\(\dfrac{2x-13}{6}\)=0
e) \(\dfrac{3\left(5x-2\right)}{4}\)-2
=\(\dfrac{7x}{3}\)-5(x-7)
g) \(\dfrac{x-3}{11}\)+\(\dfrac{x+1}{3}\)
=\(\dfrac{x+7}{9}\)-1
h) \(\dfrac{3x-0,4}{2}\)+\(\dfrac{1,5-2x}{3}\)
=\(\dfrac{x+0,5}{5}\)