Bài 4: Ôn tập chương Hàm số lượng giác và phương trình lượng giác

LU

Giải các phương trình sau:

a) Cot2x - (1 + \(\sqrt{3}\) )Cotx + \(\sqrt{3}\) = 0

b) 2Sin22x + Sin2x - 1 = 0

c) tan2(x+1) + tan(x+1) - 2 = 0

d) Sin2x + Cosx +1 =0

e) 3cos2x - 5Sinx - 1 = 0

f) 2Cos2x - Cosx + 7 = 0

g) Sin4x + Cos4x = 2

h) Cosx - \(\sqrt{3}\)Sinx = -1

NL
18 tháng 10 2020 lúc 19:57

a. ĐKXĐ: ...

\(\Leftrightarrow\left[{}\begin{matrix}cotx=1\\cotx=\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{\pi}{6}+k\pi\end{matrix}\right.\)

b.

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=-1\\sin2x=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=-\frac{\pi}{2}+k2\pi\\2x=\frac{\pi}{6}+k2\pi\\2x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=\frac{\pi}{12}+k\pi\\x=\frac{5\pi}{12}+k\pi\end{matrix}\right.\)

Bình luận (0)
NL
18 tháng 10 2020 lúc 19:59

c. ĐKXĐ: ...

\(\Leftrightarrow\left[{}\begin{matrix}tan\left(x+1\right)=1\\tan\left(x+1\right)=-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=\frac{\pi}{4}+k\pi\\x+1=arctan\left(-2\right)+k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1+\frac{\pi}{4}+k\pi\\x=-1+arctan\left(-2\right)+k\pi\end{matrix}\right.\)

d.

\(\Leftrightarrow1-cos^2x+cosx+1=0\)

\(\Leftrightarrow-cos^2x+cosx+2=0\Rightarrow\left[{}\begin{matrix}cosx=-1\\cosx=2\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow x=\pi+k2\pi\)

Bình luận (0)
NL
18 tháng 10 2020 lúc 20:02

e.

\(3\left(1-sin^2x\right)-5sinx-1=0\)

\(\Leftrightarrow-3sin^2x-5sinx+2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{3}\\sinx=-2\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=arcsin\left(\frac{1}{3}\right)+k2\pi\\x=\pi-arcsin\left(\frac{1}{3}\right)+k2\pi\end{matrix}\right.\)

f.

\(2\left(2cos^2x-1\right)-cosx+7=0\)

\(\Leftrightarrow4cos^2x-cosx+5=0\)

Phương trình vô nghiệm

Bình luận (0)
 Khách vãng lai đã xóa
NL
18 tháng 10 2020 lúc 20:04

g.

\(\Leftrightarrow\sqrt{2}sin\left(4x+\frac{\pi}{4}\right)=2\)

\(\Leftrightarrow sin\left(4x+\frac{\pi}{4}\right)=\sqrt{2}>1\)

Phương trình vô nghiệm

h.

\(\Leftrightarrow\frac{\sqrt{3}}{2}sinx-\frac{1}{2}cosx=\frac{1}{2}\)

\(\Leftrightarrow sin\left(x-\frac{\pi}{6}\right)=\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{6}=\frac{\pi}{6}+k2\pi\\x-\frac{\pi}{6}=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k2\pi\\x=\pi+k2\pi\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
LN
Xem chi tiết
BH
Xem chi tiết
PD
Xem chi tiết
MA
Xem chi tiết
HB
Xem chi tiết
PD
Xem chi tiết
LN
Xem chi tiết
DM
Xem chi tiết
KN
Xem chi tiết