Bài 8: Rút gọn biểu thức chứa căn bậc hai

TQ

Không có mô tả.

Không có mô tả.

giải bài 5,6 nhé mn

NT
3 tháng 7 2021 lúc 23:35

Bài 6:

a) Ta có: \(P=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(=\left(\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\left(\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)

\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\dfrac{-3\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{-3}{\sqrt{x}+3}\)

b) Ta có: \(P-\dfrac{1}{2}=\dfrac{-3}{\sqrt{x}+3}-\dfrac{1}{2}\)

\(=\dfrac{-6-\sqrt{x}-3}{2\left(\sqrt{x}+3\right)}=\dfrac{-\sqrt{x}-9}{2\left(\sqrt{x}+3\right)}< 0\forall x\) thỏa mãn ĐKXĐ

nên \(P< \dfrac{1}{2}\)

Bình luận (0)

Các câu hỏi tương tự
TQ
Xem chi tiết
TQ
Xem chi tiết
HN
Xem chi tiết
HV
Xem chi tiết
TL
Xem chi tiết
AE
Xem chi tiết