\(\dfrac{1}{\sqrt{49+20\sqrt{6}}}-\dfrac{1}{\sqrt{49-20\sqrt{6}}}+\dfrac{1}{\sqrt{7-4\sqrt{3}}}\)
\(=\dfrac{1}{\sqrt{5^2+2\cdot2\sqrt{6}\cdot5+\left(2\sqrt{6}\right)^2}}-\dfrac{1}{\sqrt{5^2-2\cdot2\sqrt{6}\cdot5+\left(2\sqrt{6}\right)^2}}+\dfrac{1}{\sqrt{2^2-2\cdot2\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}}\)
\(=\dfrac{1}{\sqrt{\left(5+2\sqrt{6}\right)^2}}-\dfrac{1}{\sqrt{\left(5-2\sqrt{6}\right)^2}}+\dfrac{1}{\sqrt{\left(2-\sqrt{3}\right)^2}}\)
\(=\dfrac{1}{5+2\sqrt{6}}-\dfrac{1}{5-2\sqrt{6}}+\dfrac{1}{2-\sqrt{3}}\)
\(=\dfrac{5-2\sqrt{6}}{\left(5+2\sqrt{6}\right)\left(5-2\sqrt{6}\right)}-\dfrac{5+2\sqrt{6}}{\left(5+2\sqrt{6}\right)\left(5-2\sqrt{6}\right)}+\dfrac{2+\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\)
\(=\dfrac{5-2\sqrt{6}-5-2\sqrt{6}}{1}+\dfrac{2+\sqrt{3}}{1}\)
\(=-4\sqrt{6}+2+\sqrt{3}\)
\(=\dfrac{1}{5+2\sqrt{6}}-\dfrac{1}{5-2\sqrt{6}}+\dfrac{1}{2-\sqrt{3}}\)
\(=5-2\sqrt{6}-5-2\sqrt{6}+2+\sqrt{3}\)
\(=2-4\sqrt{6}+\sqrt{3}\)
\(=\dfrac{1}{\sqrt{\sqrt{25}^2+2.\sqrt{25}.\sqrt{24}+\sqrt{24}^2}}-\dfrac{1}{\sqrt{\sqrt{25}^2-2.\sqrt{25}.\sqrt{24}+\sqrt{24}^2}}+\dfrac{1}{\sqrt{\sqrt{4}^2-2\sqrt{4}\sqrt{3}+\sqrt{3}^2}}\\ =\dfrac{1}{\sqrt{\left(\sqrt{25}+\sqrt{24}\right)^2}}-\dfrac{1}{\sqrt{\left(\sqrt{25}-\sqrt{24}\right)^2}}+\dfrac{1}{\sqrt{\left(\sqrt{4}-\sqrt{3}\right)^2}}\\ =\dfrac{1}{5+\sqrt{24}}-\dfrac{1}{5-\sqrt{24}}+\dfrac{1}{2-\sqrt{3}}\)
\(=\dfrac{5-\sqrt{24}}{25-24}-\dfrac{5+\sqrt{24}}{25-24}+\dfrac{2+\sqrt{3}}{4-3}\\ =5-\sqrt{24}-5-\sqrt{24}+2+\sqrt{3}\\ =2-4\sqrt{6}+\sqrt{3}\)