Bài 8: Rút gọn biểu thức chứa căn bậc hai

TA

Rút gọn các biểu thức sau:

a) \(\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}\)

b) \(\left(\sqrt{28}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+\sqrt{84}\)

c) \(\left(\sqrt{6}+\sqrt{5}\right)^2-\sqrt{120}\)

d) \(\left(\dfrac{1}{2}-\sqrt{\dfrac{1}{2}}-\dfrac{3}{2}\sqrt{2}+\dfrac{4}{5}\sqrt{200}\right):\dfrac{1}{8}\)

giúp nha

HL
13 tháng 7 2017 lúc 10:17

a) \(\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}\)

= \(2\sqrt{5}-3\sqrt{5}+9\sqrt{2}+6\sqrt{2}\)

= \(-\sqrt{5}+15\sqrt{2}\)

b) \(\left(\sqrt{28}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+\sqrt{84}\)

= \(\left(2\sqrt{7}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+2\sqrt{21}\)

= \(2.7-2\sqrt{21}+7+2\sqrt{21}=14+7=21\)

c) \(\left(\sqrt{6}+\sqrt{5}\right)^2-\sqrt{120}\)

= \(6+2\sqrt{6}.\sqrt{5}+5-2\sqrt{30}\)

= \(11+2\sqrt{30}-2\sqrt{30}=11\)

d) \(\left(\dfrac{1}{2}-\sqrt{\dfrac{1}{2}}-\dfrac{3}{2}\sqrt{2}+\dfrac{4}{5}\sqrt{200}\right):\dfrac{1}{8}\)

= \(\left(\dfrac{1}{2}-\sqrt{\dfrac{1}{2}}-\dfrac{3}{2}\sqrt{2}+8\sqrt{2}\right).8\)

= \(4-4\sqrt{2}-12\sqrt{2}+64\sqrt{2}=4+48\sqrt{2}\)

Bình luận (0)
NS
13 tháng 7 2017 lúc 10:31

Bài này dễ ẹc ( đâu có khó đâu :)) )

a) \(\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}\)

\(=\sqrt{2^2.5}-\sqrt{3^2.5}+3\sqrt{3^2.2}+\sqrt{6^2.2}\)

\(=2\sqrt{5}-3\sqrt{5}+9\sqrt{2}+6\sqrt{2}\)

\(=\left(2-3\right)\sqrt{5}+\left(9+6\right)\sqrt{2}\)

\(=15\sqrt{2}-\sqrt{5}\)

b) \(\left(\sqrt{28}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+\sqrt{84}\)

\(=\sqrt{2^2.7}.\sqrt{7}-2\sqrt{3}.\sqrt{7}+\sqrt{7}.\sqrt{7}+\sqrt{2^2.21}\)

\(=2.7-2\sqrt{21}+7+2\sqrt{21}\)

\(=14+7+\left(2-2\right)\sqrt{21}=21\)

c) \(\left(\sqrt{6}+\sqrt{5}\right)^2-\sqrt{120}\)

\(=6+2\sqrt{30}+5-\sqrt{2^2.30}\)

\(=6+5+2\sqrt{30}-2\sqrt{30}=11\)

d) \(\left(\dfrac{1}{2}\sqrt{\dfrac{1}{2}}-\dfrac{3}{2}\sqrt{2}+\dfrac{4}{5}\sqrt{200}\right):\dfrac{1}{8}\)

\(=\left(\dfrac{1}{2}\sqrt{\dfrac{2}{2^2}}-\dfrac{3}{2}\sqrt{2}+\dfrac{4}{5}\sqrt{10^2.2}\right):\dfrac{1}{8}\)

\(=\left(\dfrac{1}{4}\sqrt{2}-\dfrac{3}{2}\sqrt{2}+8\sqrt{2}\right).8\)

\(=2\sqrt{2}-12\sqrt{2}+64\sqrt{2}=54\sqrt{2}\)

Hok tốt

Bình luận (0)
AJ
13 tháng 7 2017 lúc 11:19

\(a.\sqrt{20}-\sqrt{45}+3\sqrt{18}-\sqrt{72}\)

= \(2\sqrt{5}-3\sqrt{5}+9\sqrt{2}-6\sqrt{2}=3\sqrt{2}-\sqrt{5}\)

b. \(\left(\sqrt{28}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+\sqrt{84}\)

= \(\sqrt{196}-2\sqrt{21}+7+\sqrt{84}\)

= \(14-2\sqrt{21}+7+2\sqrt{21}=21\)

c. \(\left(\sqrt{6}+\sqrt{5}\right)^2-\sqrt{120}\)

= \(6+2\sqrt{30}+5-\sqrt{120}=6+2\sqrt{30}+5-2\sqrt{30}=11\)

d. \(\left(\dfrac{1}{2}-\sqrt{\dfrac{1}{2}}-\dfrac{3}{2}\sqrt{2}+\dfrac{4}{5}\sqrt{200}\right):\dfrac{1}{8}\)

= \(4-\dfrac{8}{\sqrt{2}}-\dfrac{3\sqrt{2}}{4}+\dfrac{32\sqrt{200}}{5}\)

= \(4-\dfrac{8}{\sqrt{2}}-\dfrac{3}{2\sqrt{2}}+\dfrac{32.5.\sqrt{8}}{5}=4-\dfrac{16}{2\sqrt{2}}+32\sqrt{8}\)

= \(\dfrac{8\sqrt{2}-16+256}{2\sqrt{2}}=\dfrac{240+8\sqrt{2}}{2\sqrt{2}}=60\sqrt{2}+4\)

Bình luận (4)

Các câu hỏi tương tự
DV
Xem chi tiết
AH
Xem chi tiết
TT
Xem chi tiết
MN
Xem chi tiết
NT
Xem chi tiết
VT
Xem chi tiết
SK
Xem chi tiết
NS
Xem chi tiết
LN
Xem chi tiết