Bạn xem lại đề bài. Thử giá trị $a$ vào biểu thức không thu đc số nguyên.
Bạn xem lại đề bài. Thử giá trị $a$ vào biểu thức không thu đc số nguyên.
Cho \(a=\sqrt[3]{2-\sqrt{3}}+\sqrt[3]{2+\sqrt{3}}\)
Chứng minh rằng: \(\dfrac{64}{\left(a^2-3\right)^3}-3a\) có giá trị là số nguyên
1.Tìm x:\(\left(x-3\right)^3\)=\(\dfrac{1}{64}\)
2.Chứng minh:
a,(\(\sqrt[3]{\sqrt[]{9+4\sqrt[]{5}}}\).\(\sqrt[3]{\sqrt[]{5.2}}\)).\(\sqrt[3]{\sqrt[]{5-2}}\) -2,1 <0
3.Rút gọn,\(\dfrac{\sqrt[3]{a^4}+\sqrt[3]{a^2b^2}+\sqrt[3]{b^4}}{\sqrt[3]{a^2}+\sqrt[3]{ab}+\sqrt[3]{b^2}}\)
1.Chứng minh:\(\dfrac{a+\sqrt{2+\sqrt{5}.}\sqrt{\sqrt{9-4\sqrt{5}}}}{3\sqrt{2-\sqrt{5}}.\sqrt[3]{\sqrt{9+4\sqrt{5}-}3\sqrt{a^2}+\sqrt[3]{a}}}\)=\(-\sqrt[3]{a}-1\)
2.Rút gọn: \(\left(\dfrac{a^3\sqrt[]{a}-2a^3\sqrt{b}+\sqrt[3]{a^2}-\sqrt[3]{b}}{\sqrt[3]{a^2-\sqrt[3]{ab}}}+\dfrac{\sqrt[3]{a^2b}-\sqrt[3]{ab^2}}{\sqrt[3]{a}-\sqrt[3]{b}}\right)1\dfrac{1}{\sqrt[3]{a^2}}\)
Chứng minh các đẳng thức sau :
a) \(\sqrt[3]{a^3b}=a\sqrt[3]{b}\)
b) \(\sqrt[3]{\dfrac{a}{b^2}}=\dfrac{1}{3}\sqrt[3]{ab};\left(b\ne0\right)\)
🎶 Cho am3=bn3=cp3 và \(\dfrac{1}{m}+\dfrac{1}{n}+\dfrac{1}{p}=1\) . Chứng minh rằng :
\(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=\sqrt[3]{am^2+bn^2+cp^2}\)
A =\(\dfrac{x\sqrt[]{x}-3}{x-2\sqrt[]{x}-3}-\dfrac{2\left(\sqrt[]{x}-3\right)}{\sqrt[]{x}+1}+\dfrac{\sqrt[]{x}+3}{3-\sqrt[]{x}}\)
a. rút gọn A
b. Tính A với x = \(14-6\sqrt[]{5}\)
c. tìm min A
A=\(\dfrac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\dfrac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{3-\sqrt{x}}\)
a) Rút gọn A
b) Tính A với x=14-6\(\sqrt{5}\)
c) Tìm Min A
Tính:a)\(\left(\dfrac{1}{2}\sqrt[3]{9}-2\sqrt[3]{3}+3\sqrt[3]{\dfrac{1}{3}}\right)\):\(2\sqrt[3]{\dfrac{1}{3}}\)
b)\(\left(\sqrt[3]{4}+1\right)^3\)-\(\left(\sqrt[3]{4}-1\right)^3\)
c)\(\left(12\sqrt[3]{2}+\sqrt[3]{16}-2\sqrt[3]{2}\right)\)\(\left(5\sqrt[3]{4}-3\sqrt[3]{\dfrac{1}{2}}\right)\)
Rút gọn BT với \(x>0;x\ne8\)
\(P=\dfrac{8-x}{2+\sqrt[3]{x}}:\left(2+\dfrac{\sqrt[3]{x^2}}{2+\sqrt[3]{x}}\right)+\left(\sqrt[3]{x}+\dfrac{2\sqrt[3]{x}}{\sqrt[3]{x}-2}\right)\left(\dfrac{\sqrt[3]{x^2}-1}{\sqrt[3]{x^2}+2\sqrt[3]{x}}\right)\)