Cho a, b, c, x, y, z thoả mãn: x + y + z = 1 và \(\dfrac{a}{x^3}=\dfrac{b}{y^3}=\dfrac{c}{z^3}\). Chứng minh rằng: \(\sqrt[3]{\dfrac{a}{x^2}+\dfrac{b}{y^2}+\dfrac{c}{z^2}}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\)
1.Chứng minh:\(\dfrac{a+\sqrt{2+\sqrt{5}.}\sqrt{\sqrt{9-4\sqrt{5}}}}{3\sqrt{2-\sqrt{5}}.\sqrt[3]{\sqrt{9+4\sqrt{5}-}3\sqrt{a^2}+\sqrt[3]{a}}}\)=\(-\sqrt[3]{a}-1\)
2.Rút gọn: \(\left(\dfrac{a^3\sqrt[]{a}-2a^3\sqrt{b}+\sqrt[3]{a^2}-\sqrt[3]{b}}{\sqrt[3]{a^2-\sqrt[3]{ab}}}+\dfrac{\sqrt[3]{a^2b}-\sqrt[3]{ab^2}}{\sqrt[3]{a}-\sqrt[3]{b}}\right)1\dfrac{1}{\sqrt[3]{a^2}}\)
Chứng minh rằng với \(a\in R\) và \(a>\dfrac{1}{8}\) thì
\(A=\sqrt[3]{a+\dfrac{a+1}{3}\sqrt{\dfrac{8a-1}{3}}}+\sqrt[3]{a-\dfrac{a+1}{3}\sqrt{\dfrac{8a-1}{3}}}\) là một số tự nhiên
1.Tìm x:\(\left(x-3\right)^3\)=\(\dfrac{1}{64}\)
2.Chứng minh:
a,(\(\sqrt[3]{\sqrt[]{9+4\sqrt[]{5}}}\).\(\sqrt[3]{\sqrt[]{5.2}}\)).\(\sqrt[3]{\sqrt[]{5-2}}\) -2,1 <0
3.Rút gọn,\(\dfrac{\sqrt[3]{a^4}+\sqrt[3]{a^2b^2}+\sqrt[3]{b^4}}{\sqrt[3]{a^2}+\sqrt[3]{ab}+\sqrt[3]{b^2}}\)
Tính:
a)\(\sqrt[3]{125}.\sqrt[3]{\dfrac{16}{10}}.\sqrt[3]{-0,5}\)
b) \(\dfrac{\sqrt[3]{4}+\sqrt[3]{2}+2}{\sqrt[3]{4}+\sqrt[3]{2}+1}\)
c) \(\sqrt{3}+\sqrt[3]{10+6\sqrt{3}}\)
d) \(\dfrac{4+2\sqrt{3}}{\sqrt[3]{10+6\sqrt{3}}}\)
e) E=\(\sqrt[3]{2+10\sqrt{\dfrac{1}{27}}}+\sqrt[3]{2-10\sqrt{\dfrac{1}{27}}}\)
Trục căn thức ở mẫu
a) \(\dfrac{1}{1-\sqrt[3]{5}}\)
b) \(\dfrac{1}{\sqrt[3]{2}+\sqrt[3]{3}}\)
c) \(\dfrac{1}{1+\sqrt[3]{2}+\sqrt[3]{4}}\)
Chứng minh các đẳng thức sau :
a) \(\sqrt[3]{a^3b}=a\sqrt[3]{b}\)
b) \(\sqrt[3]{\dfrac{a}{b^2}}=\dfrac{1}{3}\sqrt[3]{ab};\left(b\ne0\right)\)
Tính:a)\(\left(\dfrac{1}{2}\sqrt[3]{9}-2\sqrt[3]{3}+3\sqrt[3]{\dfrac{1}{3}}\right)\):\(2\sqrt[3]{\dfrac{1}{3}}\)
b)\(\left(\sqrt[3]{4}+1\right)^3\)-\(\left(\sqrt[3]{4}-1\right)^3\)
c)\(\left(12\sqrt[3]{2}+\sqrt[3]{16}-2\sqrt[3]{2}\right)\)\(\left(5\sqrt[3]{4}-3\sqrt[3]{\dfrac{1}{2}}\right)\)
Cho \(a=\sqrt[3]{2-\sqrt{3}}+\sqrt[3]{2+\sqrt{3}}\)
Chứng minh rằng: \(\dfrac{64}{\left(a^2-3\right)^3}-3a\) có giá trị là số nguyên