Bài 1: Căn bậc hai

CM

Có bao nhiêu cặp số nguyên (x;y) thỏa mãn phương trình:

2x4-2x2y+y2=16

H24
24 tháng 5 2021 lúc 23:24

Ta có : 

\(2x^4-2x^2y+y^2=16\)

\(\Leftrightarrow\left(x^4-2x^2y+y^2\right)+x^4=16\)

\(\Leftrightarrow\left(x^2-y\right)^2+\left(x^2\right)^2=16\)

Vì \(x,y\) nguyên mà \(16=0^2+\left(2^2\right)^2=0^2+\left[\left(-2\right)^2\right]^2\)

Nên ta sẽ tìm được 2 cặp nghiệm nguyên của hai phương trình này.

Đáp số : 2.

Bình luận (0)
LH
24 tháng 5 2021 lúc 23:35

pt <=>\(x^4+\left(x^4-2x^2y+y^2\right)=16\)

\(\Leftrightarrow x^4+\left(x^2-y\right)^2=16\)

\(\Leftrightarrow x^4=16-\left(x^2-y\right)^2\le16\)

\(\Leftrightarrow0\le x^2\le4\) (*)

Do \(x\in Z\) \(\Rightarrow x^2\in N\) và \(x^2\) là số chính phương

=> \(x^2\in\left\{0;1;4\right\}\) \(\Leftrightarrow x\in\left\{0;-1;1;-2;2\right\}\)

Tại x=0 thay vào pt ta được: \(y^2=16\) \(\Leftrightarrow y=\pm4\) => Tìm được 2 cặp

Tại x2=1 thay vào pt tìm được \(\left[{}\begin{matrix}y=1+\sqrt{15}\\y=1-\sqrt{15}\end{matrix}\right.\) không thỏa mãn y nguyên => Loại

Tại \(x^2=4\)thay vào pt tìm được \(y=4\) => Tìm đc 2 cặp

Vậy tìm đc 4 cặp tm

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
LM
Xem chi tiết
KV
Xem chi tiết
LV
Xem chi tiết
DN
Xem chi tiết
NT
Xem chi tiết
AD
Xem chi tiết
H24
Xem chi tiết
PP
Xem chi tiết