Bài 1: Căn bậc hai

H24

Cho đa thức P(x) với hệ số nguyên thỏa mãn P(2012)=P(2013)=P(2014)=2013. CMR đa thức P(x) -2014 không có nghiệm nguyên...

TH
31 tháng 12 2020 lúc 11:56

Từ đề bài ta suy ra \(P\left(x\right)=\left(x-2012\right)\left(x-2013\right)\left(x-2014\right).f\left(x\right)+2013\).

Do đó \(P\left(x\right)-2014=\left(x-2012\right)\left(x-2013\right)\left(x-2014\right).f\left(x\right)-1\).

Giả sử đa thức \(P\left(x\right)-2014\) có một nghiệm nguyên x = a. Khi đó ta có: \(\left(a-2012\right)\left(a-2013\right)\left(a-2014\right).f\left(a\right)-1=0\).

Điều trên vô lí vì vế trái chia cho 3 dư 2, trong khi đó vế phải chia hết cho 3.

Vậy ta có đpcm. 

Bình luận (0)