thực hiện phép tính:
a)\(\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{2018}+\sqrt{2019}}\)
b)\(\sqrt{8-2\sqrt{15}}+\sqrt{4-2\sqrt{3}}\)
Chứng minh rằng: \(\sqrt{2\sqrt{3\sqrt{4...\sqrt{2015\sqrt{2016}}}}}< 3\)
Bài 1: Cho A = \(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{100\sqrt{99}+99\sqrt{100}}\)
So sánh A với 1
Bài 2: Tính
A = \(\left(\dfrac{3}{\sqrt{2}+1}+\dfrac{14}{2\sqrt{2}-1}-\dfrac{4}{2-\sqrt{2}}\right).\left(\sqrt{8}+2\right)\)
Bài 3: Tính tổng
S=\(\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+\dfrac{1}{\sqrt{4}+\sqrt{5}}+...+\dfrac{1}{\sqrt{2018}+\sqrt{2019}}\)
Tính GTBT
a,M=\(\left(3x^3-x^2-1\right)^{2018}\) biết x = \(\dfrac{\sqrt[3]{26+15\sqrt{3}}\left(2-\sqrt[]{3}\right)}{\sqrt[3]{9+\sqrt{80}}+\sqrt[3]{9-\sqrt{80}}}\)
b,\(x^3+ax+b\) biết x=\(\sqrt[3]{\dfrac{-b}{2}+\sqrt{\dfrac{b^2}{4}+\dfrac{a^3}{27}}}+\sqrt[3]{\dfrac{-b}{2}-\sqrt{\dfrac{b^2}{4}+\dfrac{a^3}{27}}}\)
Chứng minh rằng: (4+\(\sqrt{15}\))(\(\sqrt{10}-\sqrt{6}\))\(\sqrt{4-\sqrt{15}}\)=2
Cho 2x3 = 3y3 = 4z3
Chứng minh rằng : \(\dfrac{\sqrt[3]{2x^2+3y^2+4z^2}}{\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{4}}=1\)
Chứng minh : \(\sqrt{2018^2+2018^2\cdot2019^2+2019^2}\) là một số nguyên
CMR: \(A=\sqrt{\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}}+\sqrt{\dfrac{1}{1^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}}+\sqrt{\dfrac{1}{1^2}+\dfrac{1}{2016^2}+\dfrac{1}{2017^2}}+\sqrt{\dfrac{1}{1^2}+\dfrac{1}{2017^2}+\dfrac{1}{2018^2}}\)là 1 số hữu tỉ
Chứng minh các đẳng thức :
a) \(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\sqrt{6}\)
b) \(\sqrt{\dfrac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\dfrac{4}{\left(2+\sqrt{5}\right)^2}}=8\)