Ôn tập chương 1: Căn bậc hai. Căn bậc ba

H24

thực hiện phép tính:

a)\(\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{2018}+\sqrt{2019}}\)

b)\(\sqrt{8-2\sqrt{15}}+\sqrt{4-2\sqrt{3}}\)

AH
7 tháng 8 2021 lúc 18:49

1.

Đặt biểu thức là $A$

Ta thấy:

$\frac{1}{1+\sqrt{2}}=\frac{\sqrt{2}-1}{(1+\sqrt{2})(\sqrt{2}-1)}=\frac{\sqrt{2}-1}{2-1}=\sqrt{2}-1$

Tương tự với các phân số còn lại và công theo vế thì:

$A=(\sqrt{2}-1)+(\sqrt{3}-\sqrt{2})+...+(\sqrt{2019}-\sqrt{2018})$

$=\sqrt{2019}-1$

 

Bình luận (0)
AH
7 tháng 8 2021 lúc 18:50

2.

$\sqrt{8-2\sqrt{15}}=\sqrt{5-2\sqrt{5.3}+3}+\sqrt{3-2\sqrt{3.1}+1}$

$=\sqrt{(\sqrt{5}-\sqrt{3})^2}+\sqrt{(\sqrt{3}-1)^2}$

$=|\sqrt{5}-\sqrt{3}|+|\sqrt{3}-1|$

$=\sqrt{5}-\sqrt{3}+\sqrt{3}-1=\sqrt{5}-1$

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NN
Xem chi tiết
TP
Xem chi tiết
AL
Xem chi tiết
TP
Xem chi tiết
VT
Xem chi tiết
HT
Xem chi tiết
BD
Xem chi tiết
H24
Xem chi tiết