Bài 8: Tính chất của dãy tỉ số bằng nhau

DA

Chứng minh rằng nếu \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) thì \(\dfrac{5a+3b}{5b-3b}\)=\(\dfrac{5c+3d}{5c-3d}\)

NH
22 tháng 10 2017 lúc 9:39

Đặt :

\(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có :

\(VT=\dfrac{5a+3b}{5a-3b}=\dfrac{5bk+3b}{5bk-3b}=\dfrac{b\left(5k+3\right)}{b\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\)\(\left(2\right)\)

\(VP=\dfrac{5c+3d}{5c-3d}=\dfrac{5dk+3d}{5dk-3d}=\dfrac{d\left(5k+3\right)}{d\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrowđpcm\)

Bình luận (3)

Các câu hỏi tương tự
QT
Xem chi tiết
BA
Xem chi tiết
H24
Xem chi tiết
VN
Xem chi tiết
HF
Xem chi tiết
QT
Xem chi tiết
HN
Xem chi tiết
NH
Xem chi tiết
HK
Xem chi tiết