\(M=\dfrac{1}{3}+\dfrac{2}{3^2}+...+\dfrac{100}{3^{100}}\)
\(\Rightarrow3M=1+\dfrac{2}{3}+\dfrac{3}{3^2}+...+\dfrac{100}{3^{99}}\)
\(\Rightarrow3M-M=\left(1+\dfrac{2}{3}+\dfrac{3}{3^2}+...+\dfrac{100}{3^{99}}\right)-\left(\dfrac{1}{3}+\dfrac{2}{3^2}+...+\dfrac{100}{3^{100}}\right)\)
\(\Rightarrow2M=1+\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)-\dfrac{100}{3^{100}}\)
\(\Rightarrow2M=1+\dfrac{1}{2}-\dfrac{1}{3^{99}.2}-\dfrac{100}{3^{100}}\)
\(\Rightarrow M=\dfrac{3}{4}-\dfrac{1}{3^{99}.4}-\dfrac{50}{3^{100}}< \dfrac{3}{4}\)
Vậy...