Bài 5b: Tiếp tuyến của đồ thị hàm số

TV

Chứng minh rằng họ đường thẳng sau luôn tiếp xúc với một đường cong cố định \(\Delta_{\alpha}:2x.\sin\alpha+2y.\cos\alpha+4\sin\alpha+1=0\)

NN
29 tháng 4 2016 lúc 15:11

Vì ta chưa xác định được hình dạng của đường cong cố định nên ta sử dụng phương pháp đường biên của hình lồi

Giả sử \(M\left(x_0;y_0\right)\) là điểm mà họ \(\Delta_{\alpha}\) không đi qua. Khi đó phương trình sau vô nghiệm với mọi \(\alpha\)

   \(2x_0\sin\alpha+2y_0\cos\alpha+4\sin\alpha+1=0\)

\(\Leftrightarrow\left(2x_0+4\right)\sin\alpha+2y_0\cos\alpha+1=0\) (*)

(*) vô nghiệm \(\Leftrightarrow\left(2x_0+4\right)^2+4y^2_0< 1\Leftrightarrow\left(x_0+2\right)^2+y_0^2< \frac{1}{4}\)

Xét đường tròn (C) tâm I(-2;0) và bán kính \(R=\frac{1}{2}\) , ta có :

\(d\left(I,\Delta_{\alpha}\right)=\frac{\left|-4\sin\alpha+2.0\cos\alpha+4\sin\alpha+1\right|}{\sqrt{4\sin^2\alpha+4\cos^2\alpha}}=\frac{1}{2}=R\Rightarrow\Delta_{\alpha}\) luôn tiếp với (C)

Bình luận (0)

Các câu hỏi tương tự
LB
Xem chi tiết
PB
Xem chi tiết
TM
Xem chi tiết
NA
Xem chi tiết
NN
Xem chi tiết
VK
Xem chi tiết
LQ
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết