Bài 5b: Tiếp tuyến của đồ thị hàm số

TM

Chứng minh rằng tiệm cận xiên của họ đồ thị :

\(\left(C_m\right):y=\frac{\left(m+1\right)x^2-m^2}{x-m};\left(m\ne0\right)\) luôn tiếp xúc với một Parabol cố định

NN
29 tháng 4 2016 lúc 15:29

Ta có \(y=\left(m+1\right)x+m\left(m+1\right)+\frac{m^3}{x-m}\) suy ra tiệm cận xiên của \(\left(C_m\right)\) là đường thẳng d có phương trình \(y=\left(m+1\right)x+m\left(m+1\right)\)

Giả sử d luôn tiếp xúc với Parabol (P) : \(y=ax^2+bx+c;\left(a\ne0\right)\) khi đó phương trình sau có nghiệm bội với mọi m :

   \(ax^2+bx+c=\left(m+1\right)x+m\left(m+1\right)\)

\(\Leftrightarrow ax^2+\left(b-m-1\right)x+c-m^2-m=0\)(*)

\(\Leftrightarrow\Delta=\left(m+1-b\right)^2-4a\left(c-m^2-m\right)=0\)

\(\Leftrightarrow\left(1+4a\right)m^2+2\left[\left(1-b\right)+2a\right]m+\left(1-b\right)^2-4ac=0\) với mọi m

\(\Leftrightarrow\begin{cases}1+4a=0\\\left(1-b\right)+2a=0\\\left(1-b\right)^2-4ac=0\end{cases}\)

\(\Leftrightarrow\begin{cases}a=-\frac{1}{4}\\b=\frac{1}{2}\\c=-\frac{1}{4}\end{cases}\)

\(\Rightarrow\left(P\right):y=-\frac{1}{4}x^2+\frac{1}{2}x-\frac{1}{4}\)

Vậy d luôn tiếp xúc với Parabol (P) \(y=-\frac{1}{4}x^2+\frac{1}{2}x-\frac{1}{4}\)

Bình luận (0)
BP
29 tháng 4 2016 lúc 15:34

Giả sử \(M\left(x_0;y_0\right)\) là điểm mà d không đi qua, khi đó phương trình :

\(y_0=\left(m+1\right)x_0+m^2+m\Leftrightarrow m^2+\left(x_0+1\right)m+x_0-y_0=0\) vô nghiệm với mọi m

                                         \(\Leftrightarrow\Delta=\left(x_0+1\right)^2-4x_0+4y_0< 0\)

                                        \(\Leftrightarrow y_0< -\frac{1}{4}x_0^2+\frac{1}{2}x_0-\frac{1}{4}\)

Ta dễ dàng chứng minh được d luôn tiếp xúc với Parabol

\(\left(P\right):y=-\frac{1}{4}x^2+\frac{1}{2}x-\frac{1}{4}\)

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
NN
Xem chi tiết
LB
Xem chi tiết
NA
Xem chi tiết
NN
Xem chi tiết
DT
Xem chi tiết
PT
Xem chi tiết
TN
Xem chi tiết
NN
Xem chi tiết