Bài 5b: Tiếp tuyến của đồ thị hàm số

LB

Chứng minh rằng họ đường thẳng sau luôn tiếp xúc với một đường cong cố định \(\left(C_m\right):y=2mx^3-x^2+\left(2m+1\right)x-m^2+2\)

 
NN
29 tháng 4 2016 lúc 14:53

Giả sử \(M\left(x_0;y_0\right)\) là điểm mà họ \(\Delta_{\alpha}\) không đi qua. Khi đó phương trình sau vô nghiệm với mọi m : \(m^2-2\left(x^3_0+x_0\right)m+y_0+x^2_0-x_0-2=0\)

           \(\Leftrightarrow\Delta'=\left(x^3_0+x_0\right)^2-\left(y_0+x^2_0-x_0-2\right)< 0\)

           \(\Leftrightarrow y_0>x^6_0+2x^4_0+x_0+2\)

Xét phương trình : \(2mx^3-x^2+\left(2m+1\right)x-m^2+2=x^6+2x^4+x+2\)

                       \(\Leftrightarrow m^2-2\left(x^3+x\right)m+\left(x^3+x\right)^2=0\)

                       \(\Leftrightarrow\left(x^3+x-m\right)^2=0\) (*)

Vì phương trình \(x^3+x-m=0\) luôn có nghiệm nên (*) luôn có nghiệm bội.

Vậy \(\left(C_m\right)\) luôn tiếp xúc với đường cong \(y=x^6+2x^4+x+2\)

Bình luận (0)
ND
3 tháng 5 2016 lúc 16:37
CÁch 1: G/s họ đường thằng trên luôn tiếp xúc với parabol cố định: y=ax^2+bx+c \:\:\:(a\neq 0)
Khi đó: ax^2+bx+c=2mx-m^2+2m+2 có nghiệm kép với mọi m
hay ax^2+x(b-2m)+c+m^2-2m-2=0 có nghiệm kép với mọi m
Cách 2: Gọi M(x_o;y_o) là các điểm mà họ đường thẳng trên không đi qua.
Hay y_o=2mx_o-m^2+2m+2 vô nghiệm ẩn m
\Leftrightarrow m^2-2m(x_o+1)+y_o-2=0 vô nghiệm ẩn m
\Leftrightarrow \Delta '=(x_o+1)^2-(y_o-2)0 \\\Leftrightarrow x_o^2+2x_o+3y_o
Xét đường biên: (P)y=x^2+2x+3
Lập phương trình hoành độ giao điểm ta được: (x-m)^2=0
Phương trình này luôn có 1 nghiệm kép nên (dm) luôn tiếp xúc (P)
Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
TM
Xem chi tiết
NN
Xem chi tiết
NA
Xem chi tiết
PT
Xem chi tiết
TV
Xem chi tiết
NN
Xem chi tiết
NH
Xem chi tiết
HT
Xem chi tiết