x^2+y^2=1=>xy≤1/2
A=2/(1+xy)-2
1+xy≤1/2+1=3/2
x,y>0=>1/(1+xy)≥2/3
A≥2.2/3-2=-2/3
khi x=y=√2/2
x^2+y^2=1=>xy≤1/2
A=2/(1+xy)-2
1+xy≤1/2+1=3/2
x,y>0=>1/(1+xy)≥2/3
A≥2.2/3-2=-2/3
khi x=y=√2/2
cho hàm số y=x2-2(m+1/m)x+m (m>0) xác định trên [-1;1] . giá trị lớn nhất , giá trị nhỏ nhất của hàm số trên [-1;1] lần lượt là y1 ; y2 thoản mãn y1-y2=8
biết rằng các số x,y thõa mãn điều kiện x+y=1. tìm giá trị nhỏ nhất của biểu thức C=\(x^2+y^2+xy\)
1.Cho 2 điểm A(-2;1) và B (2;4). Tìm điểm M nằm trên trục Ox thỏa mãn AM +MB đạt giá trị nhỏ nhất .
2. Cho tam giác ABC . Tập hợp các điểm M thỏa mãn \(\overrightarrow{MA}\cdot\left(\overrightarrow{MB}+\overrightarrow{MC}\right)=0\)
Help me
cho pt bậc hai ẩn x : \(2x^2+2mx+m^2-2=0\)
a) xác định m để pt có 2 nghiệm.
b) gọi x1,x2 là nghiệm của pt trên tìm giá trị lớn nhất của biểu thức: A=\(\left|2x_1x_2+x_1+x_2-4\right|\)
Giúp em đưa ra lời giải chi tiết và dễ hiểu với bài này:
Cho phương trình \(2x^2+2\left(m-1\right)x+m^2-1=0\). Tìm m để phương trình có hai nghiệm phân x1,x2 sao cho biểu thức \(P=\left(x_1-x_2\right)^2\) đạt giá trị lớn nhất.
Tìm giá trị nhỏ nhất của A=x^2+y^2+Xy biết x+y=1
Cho x,y là hai số thực thõa mãn \(x^2+y^2=1\). Gọi M,m là giá trị lớn nhất, giá trị nhỏ nhất của biểu thức \(P=\frac{2-2xy+y^2}{4x^2-3xy+y^2}\). Tính giá trị \(A=M^2+m^2\)?
A. \(\frac{1658}{49}\)
B. \(\frac{1656}{49}\)
C. \(\frac{4344}{49}\)
D. \(\frac{1656}{7}\)
(Giải thích giùm mình)
Có bao nhiêu giá trị nguyên của m thuộc đoạn [-10;10] để phương trình x2-(m+2)x+m=0 có hai nghiệm phân biệt x1,x2 sao cho \(\dfrac{1}{x_1^2}+\dfrac{1}{x_2^2}>1\)
Giải hệ PT: \(\left\{{}\begin{matrix}x^2+y^2-xy+4y+1=0\\y\left(7-x^2-y^2+2xy\right)=2\left(x^2+1\right)\end{matrix}\right.\)