Ôn tập chương III

NN

cho hàm số y=x2-2(m+1/m)x+m (m>0) xác định trên [-1;1] . giá trị lớn nhất , giá trị nhỏ nhất của hàm số trên [-1;1] lần lượt là y1 ; y2 thoản mãn y1-y2=8 

NV
3 tháng 1 2021 lúc 21:06

Đặt y= f(x) = \(x^2-2\left(m+\dfrac{1}{m}\right)x+m\)

Hoành độ đỉnh của đồ thị hàm số x=\(m+\dfrac{1}{m}\ge2\) (BĐT co-si)

vì hệ số a =1>0 nên hàm số nghịch biến trên \(\left(-\infty;m+\dfrac{1}{m}\right)\)

Suy ra, hàm số nghịch biến trên \(\left[-1;1\right]\)

=> y1 = f(-1) = \(3m+\dfrac{2}{m}+1\)

y2 = f(1)=\(1-m-\dfrac{2}{m}\)

theo đề bài ta có : y1-y2=8 <=> \(3m+\dfrac{2}{m}+1-1+m+\dfrac{2}{m}=8\left(m>0\right)\)

<=> \(m^2-2m+1=0\)

<=> m=1

Bình luận (1)

Các câu hỏi tương tự
H24
Xem chi tiết
TD
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
JP
Xem chi tiết
NN
Xem chi tiết
RG
Xem chi tiết
HN
Xem chi tiết
NN
Xem chi tiết