Bài 7: Biến đối đơn giản biểu thức chứa căn bậc hai (Tiếp theo)

TU

Cho x; y; z là các số dương nhỏ hơn 1 thỏa mãn x + y + z + 2\(\sqrt{xyz}\)= 1. Chứng minh rằng \(\sqrt{x\left(1-y\right)\left(1-z\right)}+\sqrt{y\left(1-x\right)\left(1-z\right)}+\sqrt{z\left(1-x\right)\left(1-y\right)}=1+\sqrt{xyz}\)

NL
24 tháng 1 2022 lúc 23:53

\(\sqrt{x\left(1-y\right)\left(1-z\right)}=\sqrt{x\left(yz-y-z+1\right)}=\sqrt{x\left(yz-y-z+x+y+z+2\sqrt{xyz}\right)}\)

\(=\sqrt{x\left(yz+x+2\sqrt{xyz}\right)}=\sqrt{x^2+2x\sqrt{xyz}+xyz}=\sqrt{\left(x+\sqrt{xyz}\right)^2}\)

\(=x+\sqrt{xyz}\)

Tương tự: \(\sqrt{y\left(1-x\right)\left(1-z\right)}=y+\sqrt{xyz}\) ; \(\sqrt{z\left(1-x\right)\left(1-y\right)}=z+\sqrt{xyz}\)

\(\Rightarrow VT=x+y+z+3\sqrt{xyz}=1-2\sqrt{xyz}+3\sqrt{xyz}=1+\sqrt{xyz}\) (đpcm)

Bình luận (0)

Các câu hỏi tương tự
DT
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
MH
Xem chi tiết
AQ
Xem chi tiết
NT
Xem chi tiết
TN
Xem chi tiết
CR
Xem chi tiết
H24
Xem chi tiết