Bài 7: Biến đối đơn giản biểu thức chứa căn bậc hai (Tiếp theo)

MH

\(\left(\dfrac{\sqrt{x}+\sqrt{y}}{1-\sqrt{xy}}-\dfrac{\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}\right):\left(\dfrac{x+xy}{1-xy}\right)\)

VT
25 tháng 8 2017 lúc 10:44

\(\left(\dfrac{\sqrt{x}+\sqrt{y}}{1-\sqrt{xy}}-\dfrac{\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}\right):\left(\dfrac{x+xy}{1-xy}\right)\)

\(=\left(\dfrac{\left(\sqrt{x}+\sqrt{y}\right)\left(1+\sqrt{xy}\right)-\left(\sqrt{x}-\sqrt{y}\right)\left(1-\sqrt{xy}\right)}{\left(1-\sqrt{xy}\right)\left(1+\sqrt{xy}\right)}\right).\left(\dfrac{1-xy}{x\left(1+y\right)}\right)\)

\(=\left(\dfrac{\sqrt{x}+x\sqrt{y}+\sqrt{y}+y\sqrt{x}-\left(\sqrt{x}-x\sqrt{y}-\sqrt{y}+y\sqrt{x}\right)}{\left(1-\sqrt{xy}\right)\left(1+\sqrt{xy}\right)}\right).\left(\dfrac{1-xy}{x\left(1+y\right)}\right)\)

\(=\dfrac{2x\sqrt{y}+2\sqrt{y}}{1-xy}.\dfrac{1-xy}{x\left(1+y\right)}\)

\(=\dfrac{2\sqrt{y}\left(x+1\right)}{x\left(1+y\right)}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
DP
Xem chi tiết
NP
Xem chi tiết
AQ
Xem chi tiết
LH
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
NV
Xem chi tiết