Bài 1. GIÁ TRỊ LƯỢNG GIÁC CỦA MỘT GÓC TỪ 0 ĐẾN 180 ĐỘ

MN

Cho tan2α = 2 và π < α < \(\frac{3\pi}{2}\). Biết giá trị của biểu thức M= \(\frac{cos(\alpha+\frac{\pi}{3})+cos(\alpha-\frac{\pi}{3})}{tan(\frac{\pi}{2}-\alpha)+tan(\frac{\pi+\alpha}{2}}=\frac{a}{\sqrt{b}}\) với a, b là các số nguyên. Khi đó, giá trị của biểu thức T = 2a + b là ?

NL
16 tháng 5 2020 lúc 22:45

\(\pi< a< \frac{3\pi}{2}\Rightarrow2\pi< 2a< 3\pi\Rightarrow sin2a>0\)

\(cot2a=\frac{1}{2}\Rightarrow sin2a=\frac{1}{\sqrt{1+cot^22a}}=\frac{2\sqrt{5}}{5}\)

\(cos\left(a+\frac{\pi}{3}\right)+cos\left(a-\frac{\pi}{3}\right)=2cosa.cos\frac{\pi}{3}=cosa\)

\(tan\left(\frac{\pi}{2}-a\right)+tan\left(\frac{\pi}{2}+\frac{a}{2}\right)=\frac{-sin\frac{a}{2}}{cos\left(\frac{\pi}{2}-a\right).cos\left(\frac{\pi}{2}+\frac{a}{2}\right)}=\frac{sin\frac{a}{2}}{sina.sin\frac{a}{2}}=\frac{1}{sina}\)

\(\Rightarrow M=sina.cosa=\frac{1}{2}sin2a=\frac{\sqrt{5}}{5}=\frac{1}{\sqrt{5}}\)

\(\Rightarrow2a+b=7\)

Bình luận (0)

Các câu hỏi tương tự
AT
Xem chi tiết
NN
Xem chi tiết
LC
Xem chi tiết
VC
Xem chi tiết
LT
Xem chi tiết
KD
Xem chi tiết
BH
Xem chi tiết
DK
Xem chi tiết
PV
Xem chi tiết