Bài 7: Tứ giác nội tiếp

SK

Cho tam giác đều ABC. Trên nửa mặt phẳng bờ BC không chứa đỉnh A, lấy điểm D sao cho DB = D và \(\widehat{DCB}=\dfrac{1}{2}\widehat{ACB}.\)

a) Chứng minh ABCD là tứ giác nội tiếp.

b) Xác định tâm của đường tròn đi qua bốn điểm A, B, C, D.

QD
11 tháng 4 2017 lúc 16:27

a) Theo giả thiết, = = .60o = 30o

= + (tia CB nằm giữa hai tia CA, CD)

=> = 60o + 30o = 90o (1)

Do DB = CD nên ∆BDC cân => = = 30o

Từ đó = 60o + 30o = 90o (2)

Từ (1) và (2) có + = 180o nên tứ giác ABDC nội tiếp được.

b) Vì = 90o nên AD là đường kính của đường tròn ngoại tiếp tứ giác ABDC, do đó tâm đường tròn ngoại tiếp tứ giác ABDC là trung điểm AD.



Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
NT
Xem chi tiết
LA
Xem chi tiết
SK
Xem chi tiết
NC
Xem chi tiết
PT
Xem chi tiết
NC
Xem chi tiết
TT
Xem chi tiết
DH
Xem chi tiết