Bài 4: Khái niệm hai tam giác đồng dạng

TD

Cho tam giác DEF ~ tam giác ABC theo tỉ số đồng dạng k = 3/5  . a) Tính tỉ số chu vi của hai tam giác đã cho. b) Cho biết hiệu chu vi của hai tam giác trên là 40dm, tính chu vi mỗi tam giác.

HN
3 tháng 3 2021 lúc 18:48

a)

\(\text{Δ A'B'C' ∼ Δ ABC}\) theo tỉ số đồng dạng k = \(\dfrac{3}{5}\)

⇒ \(\dfrac{A'B'}{AB}=\dfrac{B'C'}{BC}=\dfrac{A'C'}{AC}=k=\dfrac{3}{5}\)              (1)

Áp dúng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{A'B'}{AB}=\dfrac{B'C'}{BC}=\dfrac{A'C'}{AC}=\dfrac{A'B'+B'C'+A'C'}{AB+BC+AC}=\dfrac{C_{A'B'C'}}{C_{ABC}}\)                 (2)

Từ (1) và (2) ⇒ \(\dfrac{C_{A'B'C'}}{C_{ABC}}=\dfrac{3}{5}\)           (*)

b)

Theo đề ra, ta có:

\(C_{ABC}-C_{A'B'C'}=40\left(dm\right)\)

⇒ \(C_{ABC}=40+C_{A'B'C'}\)      (**)

Thay (**) vào (*), ta được:

\(\dfrac{C_{A'B'C'}}{40+C_{A'B'C'}}=\dfrac{3}{5}\)

⇒ \(5C_{A'B'C'}=120+3C_{A'B'C'}\)

⇔ \(2C_{A'B'C'}=120\)

⇒ \(C_{A'B'C'}=60\)     (dm)

⇒ \(C_{ABC}=40+60=100\)   (dm)

Bình luận (0)

Các câu hỏi tương tự
TP
Xem chi tiết
SK
Xem chi tiết
HN
Xem chi tiết
TT
Xem chi tiết
PA
Xem chi tiết
QN
Xem chi tiết
CI
Xem chi tiết
NG
Xem chi tiết
NH
Xem chi tiết