Ôn tập chương I : Tứ giác

VA
Cho tam giác ABC vuông tại a vẽ đường trung tuyến AM gọi e là điểm đối xứng của a qua M d là điểm đối xứng của M qua AB và MD cắt AB tại H và Mẹ cắt AC tại K a) chứng minh tứ giác ABEC là hình chữ nhật, b) chứng minh tứ giác admc là hình bình hành
NT
28 tháng 12 2020 lúc 18:34

a) Xét tứ giác ABEC có 

M là trung điểm của đường chéo BC(gt)

M là trung điểm của đường chéo AE(A và E đối xứng nhau qua M)

Do đó: ABEC là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành ABEC có \(\widehat{CAB}=90^0\)(ΔABC vuông tại A)

nên ABEC là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Vì D đối xứng với M qua AB(gt)

nên AB là đường trung trực của DM

⇔AB vuông góc với DM tại trung điểm của DM

mà AB cắt DM tại H(gt)

nên H là trung điểm của DM và MH⊥AB tại H

Ta có: MH⊥AB(cmt)

AC⊥AB(ΔABC vuông tại A)

Do đó: MH//AC(Định lí 1 từ vuông góc tới song song)

hay MD//AC

Ta có: H là trung điểm của MD(cmt)

nên \(MH=\dfrac{1}{2}\cdot MD\)(1)

Xét ΔABC có 

M là trung điểm của BC(gt)

MH//AC(cmt)

Do đó: H là trung điểm của AB(Định lí 1 đường trung bình của tam giác)

Xét ΔABC có 

M là trung điểm của BC(gt)

H là trung điểm của AB(cmt)

Do đó: MH là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

\(MH=\dfrac{1}{2}\cdot AC\)(Định lí 2 đường trung bình của tam giác)(2)

Từ (1) và (2) suy ra AC=MD

Xét tứ giác ACMD có 

AC//MD(cmt)

AC=MD(cmt)

Do đó: ACMD là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Bình luận (0)

Các câu hỏi tương tự
KH
Xem chi tiết
KH
Xem chi tiết
HH
Xem chi tiết
LH
Xem chi tiết
TP
Xem chi tiết
HH
Xem chi tiết
H24
Xem chi tiết
AN
Xem chi tiết
H24
Xem chi tiết