Ôn tập chương I : Tứ giác

H24

Cho tam giác ABC vuông tại B (BA<BC). Gọi M là trung điểm của AC. Trên tia đối của tia MB lấy điểm D sao cho MD=MB.
a) Chứng minh tứ giác BADC là hình chữ nhật.
b) Gọi E là điểm đối xứng của B qua A. Chứng minh tứ giác AEDC là hình bình hành. 

c) EM cắt AD tại K. Chứng minh BC=3AK

NT
9 tháng 12 2023 lúc 9:33

a: Xét tứ giác BADC có

M là trung điểm chung của BD và AC

=>BADC là hình bình hành

Hình bình hành BADC có \(\widehat{ABC}=90^0\)

nên BADC là hình chữ nhật

b: Ta có: BADC là hình chữ nhật

=>BA//DC và BA=DC

Ta có: BA//DC

A\(\in\)BE

Do đó: AE//DC

Ta có:BA=DC

AE=AB

Do đó: AE=CD

Xét tứ giác AEDC có

AE//CD

AE=CD

Do đó: AEDC là hình bình hành

c: Ta có: E đối xứng B qua A

=>A là trung điểm của BE

Xét ΔDBE có

DA,EM là đường trung tuyến

DA cắt EM tại K

Do đó: K là trọng tâm của ΔDBE

Xét ΔDBE có 

K là trọng tâm của ΔDBE

DA là đường trung tuyến

Do đó: \(DA=3AK\)

mà DA=BC(ABCD là hình chữ nhật)

nên BC=3AK

Bình luận (0)

Các câu hỏi tương tự
NL
Xem chi tiết
VA
Xem chi tiết
LA
Xem chi tiết
TK
Xem chi tiết
NH
Xem chi tiết
PD
Xem chi tiết
LL
Xem chi tiết
TP
Xem chi tiết
HM
Xem chi tiết