Bài 9: Hình chữ nhật

NQ

Cho tam giác ABC vuông tại A trung tuyến AM. Kẻ MD vuồn góc với AB, ME vuông góc với AC. a) c/m tứ giác ADME là hình chữ nhật. b) Lấy điểm I sao cho D là trung điểm IM. Tứ giác AMBI là hình gì. c) Tìm điều kiện của tam giác ABC để tứ giác AMBI là hình vuông

NT
25 tháng 10 2023 lúc 13:45

a: Xét tứ giác ADME có

\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)

=>ADME là hình chữ nhật

b; XétΔABC có

M là trung điểm của BC

MD//AC

Do đó: D là trung điểm của AB

Xét ΔABC có

M là trung điểm của BC

ME//AB

Do đó: E là trung điểm của AC

ΔABC vuông tại A có AM là trung tuyến

nên AM=BC/2=BM=CM

Xét tứ giác AMBI có

D là trung điểm chung của AB và MI

Do đó: AMBI là hình bình hành

mà MA=MB

nên AMBI là hình thoi

c: Để AMBI là hình vuông thì \(\widehat{AMB}=90^0\)

=>AM\(\perp\)BC

Xét ΔABC có

AM là đường cao, là đường trung tuyến

Do đó: ΔABC cân tại A

=>AB=AC

Bình luận (0)

Các câu hỏi tương tự
HH
Xem chi tiết
HA
Xem chi tiết
QT
Xem chi tiết
0D
Xem chi tiết
DK
Xem chi tiết
HN
Xem chi tiết
H24
Xem chi tiết
LK
Xem chi tiết
PT
Xem chi tiết