Ôn tập góc với đường tròn

PD

Cho tam giác ABC vuông tại A nội tiếp đường tròn tâm O. Kẻ đường cao AH. Đường tròn (I) đường kính AH cắt AB,AC và đường tròn (O) lần lượt ở D,E,F. AF cắt đường thẳng BC tại S. Chứng minh:

a) Tứ giác ADHE là hình chữ nhật

b) Tứ giác BDEC nội tiếp được đường tròn

c) Chứng minh OA\(\perp\)DE và 3 điểm S,D,E thẳng hàng

Làm hộ mình phần b,c với ạ

HH
29 tháng 6 2018 lúc 11:18

Ôn tập góc với đường tròn

a) Do D, E cùng thuộc đường tròn (I) nên \(\widehat{ADH}=\widehat{AEH}=90^o\)

Xét tứ giác ADHE có \(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^o\) nên ADHE là hình chữ nhật.

b) Do ADHE là hình chữ nhật nên \(\widehat{ADE}=\widehat{AHE}\)

Lại có \(\widehat{AHE}=\widehat{BCE}\) (Cùng phụ với góc \(\widehat{EHC}\) )

Vậy nên \(\widehat{ADE}=\widehat{BCE}\)

Suy ra BDEC là tứ giác nội tiếp.

c) Gọi giao điểm của AO và DE là J.

Do ADHE là hình chữ nhật nên \(\widehat{ADJ}=\widehat{BAH}\)

Do OA = OB nên tam giác OAB cân tại O. Vậy thì \(\widehat{DAJ}=\widehat{ABH}\)

Từ đó ta có: \(\widehat{ADJ}+\widehat{DAJ}=\widehat{BAH}+\widehat{ABH}=90^o\)

Suy ra \(\widehat{DJA}=90^o\Leftrightarrow OA\perp DE\)

Ta có IA = IF, OA = OF nên OI là trung trực của FA. Vậy nên \(OI\perp FA\)

Lại có \(AI\perp SO\) nên I là trực tâm tam giác SAO.

Vậy nên \(SI\perp OA\)

Ta có DE = AH nên DE là đường kính (I). Vậy nên D, I, E thẳng hàng.

Lại có \(IE\perp OA\Rightarrow\) D, E, S thẳng hàng.

Bình luận (2)