Ôn tập chương I : Tứ giác

H24

Cho tam giác ABC vuông tại A, đường trung tuyến AM kể MD//AC cách AB tại D. ME//AB cắt AC tại E. a, chứng minh tứ giác ADME là hình chữ nhật b, chứng minh DE//BC c, biết AC = 8 cm,AB = 6 cm. Tính chu vi tứ giác DECB d, tam giác ABC cần điều kiện gì để tứ giác ADME là hình vuông

NT
31 tháng 12 2023 lúc 20:02

a: Xét tứ giác ADME có

AD//ME

AE//MD

Do đó: ADME là hình bình hành

Hình bình hành ADME có \(\widehat{DAE}=90^0\)

nên ADME là hình chữ nhật

b: Xét ΔABC có

M là trung điểm của BC

MD//AC

Do đó: D là trung điểm của AB

Xét ΔABC có

M là trung điểm của BC

ME//AB

Do đó: E là trung điểm của AC

Xét ΔABC có

D,E lần lượt là trung điểm của AB,AC

=>DE là đường trung bình của ΔABC

=>DE//BC và DE=1/2BC

c: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

=>DE=10/2=5cm

D là trung điểm của AB

nên \(BD=\dfrac{BA}{2}=\dfrac{6}{2}=3\left(cm\right)\)

E là trung điểm của AC

nên \(EC=EA=\dfrac{AC}{2}=\dfrac{8}{2}=4\left(cm\right)\)

Chu vi tứ giác EDBC là:

5+4+3+10=22(cm0

d: hình chữ nhật ADME trở thành hình vuông khi AD=AE
mà \(AD=\dfrac{AB}{2};AE=\dfrac{AC}{2}\)

nên AB=AC

Bình luận (0)

Các câu hỏi tương tự
PD
Xem chi tiết
NC
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
VA
Xem chi tiết
YG
Xem chi tiết
DD
Xem chi tiết
MX
Xem chi tiết
GL
Xem chi tiết