Ôn tập: Tam giác đồng dạng

Cho tam giác ABC vuông tại A đường cao AH, AB=3cm, AC=4cm. a)Chứng minh HBA đồng dạng ABC. b)Tính BC, AH, BH. c)Chứng minh AH=HA.HC

NT
15 tháng 7 2021 lúc 12:53

undefined

Bình luận (0)
NT
15 tháng 7 2021 lúc 13:44

a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{B}\) chung

Do đó: ΔHBA\(\sim\)ΔABC(g-g)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow BC^2=3^2+4^2=25\)

hay BC=5(cm)

Ta có: ΔHBA\(\sim\)ΔABC(cmt)

nên \(\dfrac{BH}{BA}=\dfrac{BA}{BC}=\dfrac{AH}{CA}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{BH}{3}=\dfrac{3}{5}=\dfrac{AH}{4}\)

Suy ra: BH=1,8cm; AH=2,4cm

Bình luận (0)

Các câu hỏi tương tự
HT
Xem chi tiết
LV
Xem chi tiết
NT
Xem chi tiết
MB
Xem chi tiết
KL
Xem chi tiết
MM
Xem chi tiết
TQ
Xem chi tiết
GV
Xem chi tiết
HN
Xem chi tiết