Bài 6: Tam giác cân

KP

Cho tam giác ABC vuông tại A có góc ACB =60°. Trên cạnh BC lấy điểm D sao cho CA=CD. Gọi M là trung điểm của AD:
a, tính góc ABC và chứng tỏ tam giác ACD là tam giác cân 
b, Chứng minh: tam giác ACM = tam giác DCM
c, Gọi P là giao điểm của CM và AB. Chứng minh: DP vuông góc BC

NT
13 tháng 12 2023 lúc 18:10

a: Ta có: ΔABC vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\widehat{ABC}+60^0=90^0\)

=>\(\widehat{ABC}=30^0\)

Xét ΔCAD có CA=CD
nên ΔCAD cân tại C

b: Xét ΔCAM và ΔCDM có

CA=CD

AM=DM

CM chung

Do đó: ΔCAM=ΔCDM

c: Ta có: ΔCAM=ΔCDM

=>\(\widehat{ACM}=\widehat{DCM}\)

=>\(\widehat{ACP}=\widehat{DCP}\)

Xét ΔPAC và ΔPDC có

CA=CD
\(\widehat{PCA}=\widehat{PCD}\)

CP chung

Do đó: ΔPAC=ΔPDC

=>\(\widehat{PAC}=\widehat{PDC}\)

mà \(\widehat{PAC}=90^0\)

nên \(\widehat{PDC}=90^0\)

=>PD\(\perp\)BC

Bình luận (0)

Các câu hỏi tương tự
TL
Xem chi tiết
CP
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
ML
Xem chi tiết
LN
Xem chi tiết
TD
Xem chi tiết
H24
Xem chi tiết
DV
Xem chi tiết