Bài 5: Trường hợp bằng nhau thứ ba của tam giác góc - cạnh - góc (g.c.g)

PG

Cho tam giác ABC vuông tại A có AB = AC. Gọi M là trung điểm của cạnh BC, D là trung điểm của cạnh AC

a). Chứng minh rằng: ∆AMB = ∆AMC và AM ⊥ BC

b) Từ A kẻ đường thẳng vuông góc với BD, cắt BC tại E. Trên tia đối của tia DE lấy điểm F sao cho DF = DE. Chứng minh rằng: ∆ADF = ∆CDE, từ đó suy ra: AF // CE

c) Từ C dựng đường thẳng vuông góc với AC, cắt AE tại G. Chứng minh rằng ∆BAD = ∆ACG

d) Chứng minh rằng: AB = 2CG


PT
21 tháng 12 2017 lúc 5:29

A B C M D 1 2

a/ Xét \(\Delta AMB\)\(\Delta AMC\) có:

\(AB=AC\left(gt\right)\)

\(BM=CM\)

\(AM\) cạnh chung

Do đó \(\Delta AMB=\Delta AMC\left(c.c.c\right)\)

\(\Delta AMB=\Delta AMC\Rightarrow\widehat{M_1}=\widehat{M_2}\) ( góc tương ứng )

\(\widehat{M_1}+\widehat{M_2}=180^0\) ( kề bù ) nên \(\widehat{M_1}=\widehat{M_2}=\dfrac{180^0}{2}=90^0\) hay \(AM\perp BC\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
TV
Xem chi tiết
PH
Xem chi tiết
DH
Xem chi tiết
NN
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
PN
Xem chi tiết
CR
Xem chi tiết